• 제목/요약/키워드: post-beam timber house

검색결과 5건 처리시간 0.017초

Air Tightness Performance of Residential Timber Frame Buildings

  • Kim, Hyun-Bae;Park, Joo-Saeng;Hong, Jung-Pyo;Oh, Jung-Kwon;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권2호
    • /
    • pp.89-100
    • /
    • 2014
  • Energy consumption statistics in 2005 from the Korea Energy Management Corporation show that building energy usage was about 24.2% of total domestic energy consumption, and 64% of total building energy usage was consumed by residential buildings. Thus, about 10% of total domestic energy consumption is due to the heating of residential buildings. Building energy can be calculated by the configuration of the building envelope and the rate of infiltration (the volume of the infiltration of outdoor air and the leakage of indoor air), and by doing so, the annual energy usage for heating and cooling. Therefore, air-tightness is an important factor in building energy conservation. This investigate air infiltration and various factors that decrease it in timber frame buildings and suggest ways to improve air-tightness for several structural types. Timber frame buildings can be classified into light frame, post and beam, and log house. Post and beam includes Han-ok (a Korean traditional building). Six light frame buildings, three post and beam buildings, one Korean traditional Han-ok and a log house were selected as specimens. Blower door tests were performed following ASTM E779-03. The light frame buildings showed the highest air-tightness, followed by post and beam structures, and last, log houses.

단열 기준에 따른 기둥-보 목조주택의 단열 상세 및 에너지 성능 (Insulation Details and Energy Performance of Post-Beam Timber House for Insulation Standards)

  • 김세종;박주생
    • Journal of the Korean Wood Science and Technology
    • /
    • 제43권6호
    • /
    • pp.876-883
    • /
    • 2015
  • 국립산림과학원에서는 한옥의 전통건축기술을 바탕으로 한국형 기둥-보 목조주택인 ?그린 프로젝트를 2006년부터 진행해오고 있다. 최근에는 에너지 절약 기술요소를 적용하여 건물의 에너지성능을 개선하고자 하였다. 본 연구에서는 강화된 단열기준에 따른 기둥-보 목조벽체의 단열상세를 제시하고 그에 따른 건물 에너지 절감 효과를 평가하고자 하였다. 건물외피의 열관류율은 현행법 수준과 저에너지주택인 패시브하우스 수준인 두 단계로 나누었으며 건물에너지 성능을 평가하기 위하여 건물의 기밀성능은 국내 신축 목조주택 수준인 $3.0h^{-1}$과 패시브하우스 수준이 $0.6h^{-1}$ 두 단계로 나누어 열관류율과 기밀성능의 조합에 따라 4가지 경우에 대한 건물에너지 성능 평가가 이루어졌다. 대상건물은 서울에 위치하였으며 에너지 성능은 상용 건물에너지성능 평가 프로그램인 CE3가 사용되었다. 강화된 열관류율에 따라 시뮬레이션을 진행한 결과 연간 난방에너지 요구량은 $14kWh/(m^2{\cdot}a)$ 절감효과를 나타냈다.

Cyclic Behavior of Timber Column Concealed Base Joint

  • Humbert, Jerome;Lee, Sang-Joon;Park, Joo-Saeng;Park, Moon-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제41권2호
    • /
    • pp.123-133
    • /
    • 2013
  • This paper presents experimental and numerical tests on a recently developed timber column concealed base joint. This joint was designed to replace the wood-wood connection found in the post-and-beam structure of Hanok, the traditional Korean timber house. The use of metallic connectors provides an increased ductility and energy dissipation for a better performance under reversed loading, especially seismic. In this study, we investigate the performance of the joint under pseudo-static reversed cyclic moment loading through the study of its ductility and energy dissipation. We first perform experimental tests. Results show that the failure occurs in the metallic connector itself because of stress concentrations, while no brittle fracture of wood occur. Subsequent numerical simulations using a refined finite element model confirm these conclusions. Then, using a practical modification of the joint configuration with limited visual impact, we improve the ductility and energy dissipation of the joint while retaining a same level of rotational strength as the originally designed configuration. We conclude that the joint has a satisfying behavior under reversed moment loading for use in earthquake resistant timber structure in low to moderate seismicity areas like Korea.

Influence of Air-tightness on Heat Energy Performance in Post and Beam Building with Exposed Wood Frame

  • Kim, Hyun-Bae;Kim, Se-Jong;Oh, Jung-Kwon;Park, Joo-Saeng;Lee, Jun-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권5호
    • /
    • pp.319-326
    • /
    • 2012
  • Han-green building is one of the modernized Korean traditional buildings developed by Korea Forest Research Institute. This building was developed to increase the competitiveness of Korean traditional building using state-of-art technologies; hence Han-green building has the inherent characteristics of traditional building such as exposed wood frame in wall. Because of discontinuity in wall by the exposed wood frame, there is a concern on heat-air leaking in terms of energy performance. In this study, air-tightness of Han-green building was evaluated to investigate the influence of gaps between frames and in-fill walls. Blower door test was carried out to evaluate the air-tightness, and air-change rate (ACH50) was evaluated by averaging four set of pressurization and depressurization test. The air-change rate of Han-green house was 5.91 $h^{-1}$. To improve energy performance of Han-green house, thermal infrared images of Han-green house were taken in winter with heating to find out where the heat loss occurred. It was found that the building lost more heat through gaps between frames and in-fill walls rather than through other parts of this building. After covering all the gaps by taping, the blower door test was performed again, and the air-change rate was improved to 5.25 $h^{-1}$. From this analysis, it was concluded that the heated air can leak through the gaps between frames and walls. Therefore, when one designs the post and beam building with exposed frame, the detail design between frame and wall needs to be carefully dealt. However, Han-green building showed relatively high air-tightness comparing with other country research results.

Analysis of Airtightness and Air Leakage of Wooden Houses in Korea

  • Kim, Sejong;Chang, Yoon-Seong;Park, Joo-Saeng;Shim, Kug-Bo
    • Journal of the Korean Wood Science and Technology
    • /
    • 제45권6호
    • /
    • pp.828-835
    • /
    • 2017
  • Airtightness of buildings is one of critical aspects of its energy performance. To build up references of airtightness of wooden houses built in Korea, blower door tests have been carried out in 42 houses since 2006. Causes of air leakage were investigated recently. The average value of air change rate was $3.7h^{-1}$ for light frame house and $5.5h^{-1}$ for post-beam construction at ACH50 (air change per hour at 50 Pa air pressure difference). Foam type insulation was more advantageous in ensuring building airtightness than glass fiber batt. Airtightness of wooden houses which were constructed after 2010 was improved to have less than $1.5h^{-1}$ of ACH50, threshold for application of artificial air change. The average air change rate of CLT (cross laminated timber) houses showed the lowest value, $1.1h^{-1}$, among the tested structures.