• 제목/요약/키워드: post buckling

검색결과 285건 처리시간 0.022초

Nonlinear and post-buckling responses of FGM plates with oblique elliptical cutouts using plate assembly technique

  • Ghannadpour, S.A.M.;Mehrparvar, M.
    • Steel and Composite Structures
    • /
    • 제34권2호
    • /
    • pp.227-239
    • /
    • 2020
  • The aim of this study is to obtain the nonlinear and post-buckling responses of relatively thick functionally graded plates with oblique elliptical cutouts using a new semi-analytical approach. To model the oblique elliptical hole in a FGM plate, six plate-elements are used and the connection between these elements is provided by the well-known Penalty method. Therefore, the semi-analytical technique used in this paper is known as the plate assembly technique. In order to take into account for functionality of the material in a perforated plate, the volume fraction of the material constituents follows a simple power law distribution. Since the FGM perforated plates are relatively thick in this research, the structural model is assumed to be the first order shear deformation theory and Von-Karman's assumptions are used to incorporate geometric nonlinearity. The equilibrium equations for FGM plates containing elliptical holes are obtained by the principle of minimum of total potential energy. The obtained nonlinear equilibrium equations are solved numerically using the quadratic extrapolation technique. Various sets of boundary conditions for FGM plates and different cutout sizes and orientations are assumed here and their effects on nonlinear response of plates under compressive loads are examined.

Nonlocal nonlinear analysis of nano-graphene sheets under compression using semi-Galerkin technique

  • Ghannadpour, S.A.M.;Moradi, F.
    • Advances in nano research
    • /
    • 제7권5호
    • /
    • pp.311-324
    • /
    • 2019
  • The present study aims to evaluate the nonlinear and post-buckling behaviors of orthotropic graphene sheets exposed to end-shortening strain by implementing a semi-Galerkin technique, as a new approach. The nano-sheets are regarded to be on elastic foundations and different out-of-plane boundary conditions are considered for graphene sheets. In addition, nonlocal elasticity theory is employed to achieve the post-buckling behavior related to the nano-sheets. In the present study, first, out-of-plane deflection function is considered as the only displacement field in the proposed technique, which is hypothesized by an appropriate deflected form. Then, the exact nonlocal stress function is calculated through a complete solution of the von-Karman compatibility equation. In the next step, Galerkin's method is used to solve the unknown parameters considered in the proposed technique. In addition, three different scenarios, which are significantly different with respect to concept, are used to satisfy the natural in-plane boundary conditions and completely attain the stress function. Finally, the post-buckling behavior of thin graphene sheets are evaluated for all three different scenarios, and the impacts of boundary conditions, polymer substrate, and nonlocal parameter are examined in each scenario.

축방향 압축력을 받는 원통형 박막소재의 좌굴후 탄소성 대변형에 관한 실험 및 해석 연구 (Experimental and Numerical Study on the Elastic-Plastic, Large Deflection, Post-Buckling Behavior of Axially Compressed Circular Cylindrical Tubes)

  • 권세문;윤희도
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집A
    • /
    • pp.969-974
    • /
    • 2001
  • Circular cylindrical tubes are widely used in structures such as vehicles and aircraft structures, where light weight and high compressive/bending/torsional load carrying capacity are required. When axially compressed, relatively thick circular cylindrical tubes deform in a so-called ring mode. Each ring develops and completely collapses one by one until the entire length of the tube collapses. During the collapse process the tube absorbs a large amount of energy. Like honey-comb structures, circular cylindrical tubes are light weighted, are capable of high axial compressive load, and absorb a large amount of energy before being completely collapsed. In this report, the subject of axial plastic buckling of circular cylindrical tubes was reviewed first. Then, the axial collapse process of the tubes in a so-called ring mode was studied both experimentally and numerically. In the experiment, steel tubes were axially compressed slowly until they were completely collapsed. Fixed boundary condition was provided. Numerical study involves axisymmetric, elastic-plastic, large deflection, self-contact mechanisms. The measured and calculated results were presented and compared with each other. The purpose of the study was to evaluate the load carrying capacity and the energy absorbing capacity of the tube.

  • PDF

On axial buckling and post-buckling of geometrically imperfect single-layer graphene sheets

  • Gao, Yang;Xiao, Wan-shen;Zhu, Haiping
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.261-275
    • /
    • 2019
  • The main objective of this paper is to study the axial buckling and post-buckling of geometrically imperfect single-layer graphene sheets (GSs) under in-plane loading in the theoretical framework of the nonlocal strain gradient theory. To begin with, a graphene sheet is modeled by a two-dimensional plate subjected to simply supported ends, and supposed to have a small initial curvature. Then according to the Hamilton's principle, the nonlinear governing equations are derived with the aid of the classical plate theory and the von-karman nonlinearity theory. Subsequently, for providing a more accurate physical assessment with respect to the influence of respective parameters on the mechanical performances, the approximate analytical solutions are acquired via using a two-step perturbation method. Finally, the authors perform a detailed parametric study based on the solutions, including geometric imperfection, nonlocal parameters, strain gradient parameters and wave mode numbers, and then reaching a significant conclusion that both the size-dependent effect and a geometrical imperfection can't be ignored in analyzing GSs.

비선형 탄성 복합재료 기둥의 임계 좌굴하중 계산 및 안정성 평가 (Stability Evaluation & Determination of Critical Buckling Load for Non-Linear Elastic Composite Column)

  • 주기호;정재호;강태진
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2003년도 춘계학술발표대회 논문집
    • /
    • pp.215-219
    • /
    • 2003
  • Buckling and post-buckling Analysis of Ludwick type and modified Ludwick type elastic materials was carried out. Because the constitutive equation, or stress-strain relationship is different from that of linear elastic one, a new governing equation was derived and solved by $4^{th}$ order Runge-Kutta method. Considered as a special case of combined loading, the buckling under both point and distributed load was selected and researched. The final solution takes distinguished behavior whether the constitutive relation is chosen to be modified or non-modified Ludwick type as well as linear or non-linear. We also derived strain energy function for non-linear elastic constitutive relationship. By doing so, we calculated the criterion function which estimates the stability of the equilibrium solutions and determines critical buckling load for non-linear cases. We applied this theory to the constitutive relationship of fabric, which also is the non-linear equation between the applied moment and curvature. This results has both technical and mathematical significance.

  • PDF

박판 블록의 용접 좌굴 변형 해석에 관한 연구 (Study on the Analysis of Welding Induced Buckling Distortion in Thin Plate Block)

  • 장경복;박중구;양진혁;조시훈;장태원
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2005년도 추계학술발표대회 개요집
    • /
    • pp.23-25
    • /
    • 2005
  • This paper presents a numerical analysis method for predicting welding-induced deformation and buckling in ship block with thin plates. The numerical method is particularized on evaluating buckling distortion induced by welding. There are two steps in the numerical analysis model. One is to solve the eigenvalue problem of welded structure by elastic buckling analysis, and the other is to solve the welding-induced buckling distortion of welded structure by post-mechanical analysis. Equivalent force method was used for considering the shrinkage force by welding in the analysis model.

  • PDF

편심압축하중을 받는 사각튜브의 최대압괴하중 (Maximum Crippling Load in Eccentrically Compressed rectangular Tubes)

  • 김천욱;한병기;정창현;김지홍
    • 한국자동차공학회논문집
    • /
    • 제7권8호
    • /
    • pp.180-189
    • /
    • 1999
  • This paper describes the collapse characteristics of the rectangular tube under eccentric compressive load. Local buckling stress and maximum crippling load are investigated. A thin-walled tube under load is controlled by local buckling or yielding of material according to the ratio of thickness to width (t/b) of the cross section, and subsequent collapse of the section. The relationship can be divided into three regions : elastic , post-buckling and crippling . the load-displacement relationship is theoretically presented in each region by introducing the stress distribution of the cross section in the loading process. And the maximum load carrying capacity is derived in the closed form as a function of normal stress on the flange and web.

  • PDF

Imperfection sensitivity to elastic buckling of wind loaded open cylindrical tanks

  • Godoy, Luis A.;Flores, Fernando G.
    • Structural Engineering and Mechanics
    • /
    • 제13권5호
    • /
    • pp.533-542
    • /
    • 2002
  • This paper considers the buckling and post-buckling behavior of empty metal storage tanks under wind load. The structures of such tanks may be idealized as cantilever cylindrical shells, and the structural response is investigated using a computational model. The modeling employs a doubly curved finite element based on a theory by Simo and coworkers, which is capable of handling large displacements and plasticity. Buckling results for tanks with four different geometric relations are presented to consider the influence of the ratios between the radius and the height of the shell (R/L), and between the radius and the thickness (R/t). The studies aim to clarify the differences in the shells regarding their imperfection-sensitivity. The results show that thin-walled short tanks, with R/L = 3, display high imperfection sensitivity, while tanks with R/L = 0.5 are almost insensitive to imperfections. Changes in the total potential energy of tanks that would buckle under the same high wind pressures are also considered.

A proposed set of popular limit-point buckling benchmark problems

  • Leahu-Aluas, Ion;Abed-Meraim, Farid
    • Structural Engineering and Mechanics
    • /
    • 제38권6호
    • /
    • pp.767-802
    • /
    • 2011
  • Developers of new finite elements or nonlinear solution techniques rely on discriminative benchmark tests drawn from the literature to assess the advantages and drawbacks of new formulations. Buckling benchmark tests provide a rigorous evaluation of finite elements applied to thin structures, and a complete and detailed set of reference results would therefore prove very useful in carrying out such evaluations. Results are usually presented in the form of load-deflection curves that developers must reconstruct by extracting the points, a procedure which is often tedious and inaccurate. Moreover the curves are usually given without accompanying information such as the calculation time or number of iterations it took for the model to converge, even though this type of data is equally important in practice. This paper presents ten different limit-point buckling benchmark tests, and provides for each one the reference load-deflection curve, all the points necessary to recreate the curve in tabulated form, analysis data such as calculation time, number of iterations and increments, and all of the inputs used to obtain these results.

API-X80 라인파이프의 좌굴 안정성 평가 (Buckling Behavior of API-X80 Linepipe)

  • 조우연;안성수;윤태양;유장용
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.211-216
    • /
    • 2007
  • The objective of this paper is to present the results of an experimental and a finite-element investigation into the behavior of X80 grade pipes subjected to bending. For the pipe specimens comprising the test series, different D/t is applied to be representative of those that can be expected in the field. Results from the numerical models are checked against the observations in the testing program and the ability of numerical solutions to predict pipe moment capacity. curvatures. and buckling modes is established. A finite-element model was developed using the finite-element simulator to predict the local buckling behavior of pipes. The comparison between the numerical and the experimental results demonstrates the ability of the analytical model to predict the local buckling behavior of pipes when deformed well into the post-yield range.

  • PDF