• 제목/요약/키워드: positive-voltage bias stress

검색결과 31건 처리시간 0.033초

음 바이어스 스트레스를 받은 졸-겔 IGZO 박막 트랜지스터를 위한 효과적 양 바이어스 회복 (Effective Positive Bias Recovery for Negative Bias Stressed sol-gel IGZO Thin-film Transistors)

  • 김도경;배진혁
    • 센서학회지
    • /
    • 제28권5호
    • /
    • pp.329-333
    • /
    • 2019
  • Solution-processed oxide thin-film transistors (TFTs) have garnered great attention, owing to their many advantages, such as low-cost, large area available for fabrication, mechanical flexibility, and optical transparency. Negative bias stress (NBS)-induced instability of sol-gel IGZO TFTs is one of the biggest concerns arising in practical applications. Thus, understanding the bias stress effect on the electrical properties of sol-gel IGZO TFTs and proposing an effective recovery method for negative bias stressed TFTs is required. In this study, we investigated the variation of transfer characteristics and the corresponding electrical parameters of sol-gel IGZO TFTs caused by NBS and positive bias recovery (PBR). Furthermore, we proposed an effective PBR method for the recovery of negative bias stressed sol-gel IGZO TFTs. The threshold voltage and field-effect mobility were affected by NBS and PBR, while current on/off ratio and sub-threshold swing were not significantly affected. The transfer characteristic of negative bias stressed IGZO TFTs increased in the positive direction after applying PBR with a negative drain voltage, compared to PBR with a positive drain voltage or a drain voltage of 0 V. These results are expected to contribute to the reduction of recovery time of negative bias stressed sol-gel IGZO TFTs.

저온에서 제작된 p-채널 poly-Si TFT의 전기적 스트레스 효과 (Effects of electrical stress on low temperature p-channel poly-Si TFT′s)

  • 백희원;임동규;임석범;정주용;이진민;김영호
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.324-327
    • /
    • 2000
  • In this paper, the effects of negative and positive bias stress on p-channel poly-Si TFT's fabricated by excimer laser annealing have been investigated After positive and negative bias stress, transcon-ductance(g$_{m}$) is increased because of a reduction of the effective channel length due to the injected electron in the gate oxide. In the positive bias stress, the injection of hole is appeared after stress time of 3600sec and g$_{m}$ is decreased. On the other hand, the gate voltage at the maximum g$_{m}$, S-swing and threshold voltage(V$_{th}$) are decreased because of the interface state generation due to the injection of electrons into the gate oxide.e.ide.e.

  • PDF

Anomalous Stress-Induced Hump Effects in Amorphous Indium Gallium Zinc Oxide TFTs

  • Kim, Yu-Mi;Jeong, Kwang-Seok;Yun, Ho-Jin;Yang, Seung-Dong;Lee, Sang-Youl;Lee, Hi-Deok;Lee, Ga-Won
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권1호
    • /
    • pp.47-49
    • /
    • 2012
  • In this paper, we investigated the anomalous hump in the bottom gate staggered a-IGZO TFTs. During the positive bias stress, a positive threshold voltage shift was observed in the transfer curve and an anomalous hump occurred as the stress time increased. The hump became more serious in higher gate bias stress while it was not observed under the negative bias stress. The analysis of constant gate bias stress indicated that the anomalous hump was influenced by the migration of positively charged mobile interstitial zinc ion towards the top side of the a-IGZO channel layer.

잉크젯 프린팅으로 제작된 유기 박막 트랜지스터의 이력특성 분석 (Hysteresis characteristics of organic thin film transistors using inkjet printing)

  • 구남희;송승현;최길복;송근규;김보성;신성식;정윤하
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2006년도 하계종합학술대회
    • /
    • pp.557-558
    • /
    • 2006
  • In this paper, the hysteresis characteristics by bias stress in organic thin film transistors using inkjet printing were investigated. Electron trapping increased threshold voltage for positive gate bias stress and hole trapping decreased threshold voltage for negative gate bias stress. From these phenomena, highly reproducible measurement method which minimized threshold voltage shift by choosing the proper range of gate voltage was suggested. Using this measurement method, we found that electron trapping as well as hole trapping had important influence on hysteresis characteristics.

  • PDF

Bias stress effect in organic thin-film transistors with cross-linked PVA gate dielectric and its reduction method using $SiO_2$ blocking layer

  • Park, Dong-Wook;Lee, Cheon-An;Jung, Keum-Dong
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2006년도 6th International Meeting on Information Display
    • /
    • pp.445-448
    • /
    • 2006
  • Bias stress effect in pentacene organic thin-flim transistors with cross-linked PVA gate dielectric is analyzed. For negative gate bias stress, positive threshold voltage shift is observed. The injected charges from the gate electrode to the defect states of gate dielectric are regarded as the main origin of $V_T$ shift. The reduced bias stress effect using $SiO_2$ blocking layer confirms the assumed mechanism. It is also demonstrated that the inverter with $SiO_2$ blocking layer shows the negligible hysteresis owing to the reduced bias stress effect.

  • PDF

고전계 인가 산화막의 애노우드와 캐소우드 트랩 (Anode and Cathode Traps in High Voltage Stressed Silicon Oxides)

  • 강창수;김동진
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 춘계학술대회 논문집
    • /
    • pp.461-464
    • /
    • 1999
  • This study has been investigated that traps generated inside of the oxide and at the oxide interfaces by the stress bias voltage. The traps are charged near the cathode with negative charge and charged near the anode with positive charge. The charge state of the traps can easily be changed by application of low voltages after the stress high voltage. These trap generation involve either electron impact ionization processes or high field generation processes. It determined to the relative traps locations inside the oxides ranges from 113.4$\AA$ to 814$\AA$ with capacitor areas of 10$^{-3}$ $\textrm{cm}^2$ . The oxide charge state of traps generated by the stress high voltage contain either a positive or a negative charge.

  • PDF

Effects of multi-layered active layers on solution-processed InZnO TFTs

  • Choi, Won Seok;Jung, Byung Jun;Kwon, Myoung Seok
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.204.1-204.1
    • /
    • 2015
  • We studied the electrical properties and gate bias stress (GBS) stability of thin film transistors (TFTs) with multi-stacked InZnO layers. The InZnO TFTs were fabricated via solution process and the In:Zn molar ratio was 1:1. As the number of InZnO layers was increased, the mobility and the subthreshold swing (S.S) were improved, and the threshold voltage of TFT was reduced. The TFT with three-layered InZnO showed high mobility of $21.2cm^2/Vs$ and S.S of 0.54 V/decade compared the single-layered InZnO TFT with $4.6cm^2/Vs$ and 0.71 V/decade. The three-layered InZnO TFTs were relatively unstable under negative bias stress (NBS), but showed good stability under positive bias stress (PBS).

  • PDF

a-Si Gate Driver with Alternating Gate Bias to Pull-Down TFTs

  • Kim, Byeong-Hoon;Pi, Jae-Eun;Oh, Min-Woo;Tao, Ren;Oh, Hwan-Sool;Park, Kee-Chan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1243-1246
    • /
    • 2009
  • A novel a-Si TFT integrated gate driver circuit which suppresses the threshold voltage shift due to prolonged positive gate bias to pull-down TFTs, is reported. Negative gate-to-drain bias is applied alternately to the pull-down TFTs to recover the threshold voltage shift. Consequently, the stability of the circuit has been improved considerably.

  • PDF

Effects of Temperature Stress on VFB Shifts of HfO2-SiO2 Double Gate Dielectrics Devices

  • Lee, Kyung-Su;Kim, Sang-Sub;Choi, Byoung-Deog
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제43회 하계 정기 학술대회 초록집
    • /
    • pp.340-341
    • /
    • 2012
  • In this work, we investigated the effects of temperature stress on flatband voltage (VFB) shifts of HfO2-SiO2 double gate dielectrics devices. Fig. 1 shows a high frequency C-V of the device when a positive bias for 10 min and a subsequent negative bias for 10 min were applied at room temperature (300 K). Fig. 2 shows the corresponding plot when the same positive and negative biases were applied at a higher temperature (473.15 K). These measurements are based on the BTS (bias temperature stress) about mobile charge in the gate oxides. These results indicate that the positive bias stress makes no difference, whereas the negative bias stress produces a significant difference; that is, the VFB value increased from ${\Delta}0.51$ V (300 K, Fig. 1) to ${\Delta}14.45$ V (473.15 K, Fig. 2). To explain these differences, we propose a mechanism on the basis of oxygen vacancy in HfO2. It is well-known that the oxygen vacancy in the p-type MOS-Cap is located within 1 eV below the bottom of the HfO2 conduction band (Fig. 3). In addition, this oxygen vacancy can easily trap the electron. When heated at 473.15 K, the electron is excited to a higher energy level from the original level (Fig. 4). As a result, the electron has sufficient energy to readily cross over the oxide barrier. The probability of trap about oxygen vacancy becomes very higher at 473.15 K, and therefore the VFB shift value becomes considerably larger.

  • PDF

Annealing temperature dependence on the positive bias stability of IGZO thin-film transistors

  • Shin, Hyun-Soo;Ahn, Byung-Du;Rim, You-Seung;Kim, Hyun-Jae
    • Journal of Information Display
    • /
    • 제12권4호
    • /
    • pp.209-212
    • /
    • 2011
  • The threshold voltage shift (${\Delta}V_{th}$) under positive-voltage bias stress (PBS) of InGaZnO (IGZO) thin-film transistors (TFTs) annealed at different temperatures in air was investigated. The dramatic degradation of the electrical performance was observed at the sample that was annealed at $700^{\circ}C$. The degradation of the saturation mobility (${\mu}_{sat}$) resulted from the diffusion of indium atoms into the interface of the IGZO/gate insulator after crystallization, and the degradation of the subthreshold slope (S-factor) was due to the increase in the interfacial and bulk trap density. In spite of the degradation of the electrical performance of the sample that was annealed at $700^{\circ}C$, it showed a smaller ${\Delta}V_{th}$ under PBS conditions for $10^4$ s than the samples that were annealed at $500^{\circ}C$, which is attributed to the nanocrystal-embedded structure. The sample that was annealed at $600^{\circ}C$ showed the best performance and the smallest ${\Delta}V_{th}$ among the fabricated samples with a ${\mu}_{sat}$ of $9.38cm^2/V$ s, an S-factor of 0.46V/decade, and a ${\Delta}V_{th}$ of 0.009V, which is due to the passivation of the defects by high thermal annealing without structural change.