• Title/Summary/Keyword: positive position feedback controller

Search Result 37, Processing Time 0.021 seconds

Implementation of Auto-tuning Positive Position Feedback Controller Using DSP Chip and Microcontroller (디지털신호처리 칩과 마이크로 컨트롤러를 이용한 자동 조정 양변위 되먹임 제어기의 구현)

  • Kwak, Moon K.;Kim, Ki-Young;Bang, Se-Yoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.954-961
    • /
    • 2005
  • This paper is concerned with the implementation of auto-tuning positive position feedback controller using a digital signal processor and microcontroller. The main advantage of the positive position feedback controller is that it can control a natural mode of interest by tuning the filter frequency of the positive position feedback controller to the natural frequency of the target mode. However, the positive position feedback controller loses its advantage when mistuned. In this paper, the fast fourier transform algorithm is implemented on the microcontroller whereas the positive position feedback controller is implemented on the digital signal processor. After calculating the frequency which affects the vibrations of structure most, the result is transferred to the digital signal processor. The digital signal processor updates the information on the frequency to be controlled so that it can cope with both internal and external changes. The proposed scheme was installed and tested using a beam equipped with piezoceramic sensor and actuator. The experimental results show that the auto-tuning positive position feedback controller proposed in this paper can suppress vibrations even when the target structure undergoes structural change thus validating the approach.

Implementation of Adaptive Positive Popsition Feedback Controller Using DSP chip and Microcontroller (디지털신호처리 칩과 마이크로 컨트롤러를 이용한 적응 양변위 되먹임 제어기의 구현)

  • Kwak, Moon-K.;Kim, Ki-Young;Bang, Se-Yoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.498-503
    • /
    • 2005
  • This paper is concerned with the implementation of adaptive positive position feedback controller using a digital signal processor and microcontroller The main advantage of the positive position feedback controller is that it can control a natural mode of interest by tuning the filter frequency of the positive position feedback controller to the natural frequency of the target mode. However, the positive position feedback controller loses its advantage when mistuned. In this paper, the fast fourier transform algorithm is implemented on the microcontroller whereas the positive position feedback controller is implemented on the digital signal processor. After calculating the frequency which affects the vibrations of structure most the result is transferred to the digital signal processor. The digital signal processor updates the information on the frequency to be controlled so that it can cope with both internal and external changes. The proposed scheme was installed and tested using a beam equipped with piezoceramic sensor and actuator. The experimental results show that the adaptive positive position feedback controller proposed in this paper can suppress vibrations even when the target structure undergoes structural change thus validating the approach.

  • PDF

Design of Single-Input Single-Output Positive Position Feedback Controller For the Control of Multiple Modes (다중모드제어를 위한 단일 입출력 양변위 되먹임제어기의 설계)

  • Jeong, Moon-San;Kwak, Moon-K.;Lee, Myung-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.310-313
    • /
    • 2005
  • This paper is concerned with the active vibration control of beam equipped with piezoceramic sensors and actuators. The single-input and single-output positive position feedback controller is considered as an active vibration controller for the beam. The proposed single-input and single-output positive position feedback controller can cope with many modes of interest by summing each positive position feedback controller designed for each mode. In this paper, theoretical formulation is first explained in detail. We discuss how to design the single-input and single-output positive position feedback controller for a target structure by considering Euler-Bemoulli beam. It is found that the theories developed in this study are capable of predicting the control system characteristics and its performance.

  • PDF

Design of Multi-Input Multi-Output Positive Position feedback Controller based on Block-Inverse Technique (블록 역행렬 기법에 의한 다중입출력 양변위 되먹임제어기의 설계)

  • Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.508-514
    • /
    • 2005
  • This paper is concerned with the active vibration control of a grid structure equipped with piezoceramic sensors and actuators. The grid structure is a replica of the solar panel commonly mounted on satellites, which contains complex natural mode shapes. The multi input and multi output positive position feedback controller is considered as an active vibration controller for the grid structure. A new concept, the block-inverse technique, is proposed to cope with more modes than the number of actuators and sensors. This study also deals with the stability and the spillover effect associated with the application of the multi-input multi-output positive position feedback controller based on the block inverse technique. It was found that the theories developed in this study are capable of predicting the control system characteristics and its performance. The new multi-input multi-output positive position feedback controller was applied to the test structure using a digital signal processor and its efficacy was verified by experiments..

  • PDF

Design of Multi-input Multi-output Positive Position Feedback Controller Based on Block-inverse Technique (블록 역행렬 기법에 의한 다중입출력 양변위 되먹임제어기의 설계)

  • Kwak, Moon K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1037-1044
    • /
    • 2005
  • This paper is concerned with the active vibration control of a grid structure equipped with piezoceramic sensors and actuators. The grid structure is a replica of the solar panel commonly mounted on satellites, which contains complex natural mode shapes. The multi-input and multi-output positive position feedback controller is considered as an active vibration controller for the grid structure. A new concept, the block-inverse technique, is proposed to cope with more modes than the number of actuators and sensors. This study also deals with the stability and the spillover effect associated with the application of the multi-input multi-output positive position feedback controller based on the block-inverse technique. It was found that the theories developed in this study are capable of predicting the control system characteristics and its performance. The new multi-input multi-output positive position feedback controller was applied to the test structure using a digital signal processor and its efficacy was verified by experiments.

Real-Time Tuning of the Active Vibration Controller by the Genetic Algorithm (유전자 알고리즘을 이용한 능동진동제어기의 실시간 조정)

  • 신태식
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1083-1093
    • /
    • 2000
  • This paper is concerned with the real-time automatic tuning of the positive position feedback controller for smart structures by the genetic algorithms. The genetic algorithms haute proven its effectiveness in searching optimal design parameters without falling into local minimums thus rendering globally optimal solutions. The advantage of the positive position feedback controller is that if it is tuned properly it can enhance the damping value of a target mode without affecting other modes. In this paper, we develop for the first time a real-time algorithm for determining a tuning frequency of the PPF controller based on the genetic algorithms. To this end, the digital PPF control law is downloaded to the DSP chip and a main program, which runs the genetic algorithms in real time, updates the parameter of the controller in real time. Hence, any kind of control including the positive position feedback controller can be used in adaptive fashion in real time. Experimental results show that the real-time tuning of the positive position feedback controller can be achieved successfully. so that vibrations are suppressed satisfactorily.

  • PDF

The Stability Conditions, Performance and Design Methodology for the Positive Position Feedback Controller (양변위 되먹임 제어기의 안정성, 제어 성능 및 설계 방법)

  • Kwak, Moon-Kyu;Han, Sang-Bo;Heo, Seok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.3
    • /
    • pp.208-213
    • /
    • 2004
  • This paper is concerned with the theoretical estimation of the single-input single-output(SISO) positive position feedback(PPF) controller and the derivation of the stability conditions for the multi-input multi-output (MIMO) PPF controller. Although the stability condition for the SISO PPF controller was derived in the earlier works, the question regarding the performance estimation of the SISO PPF controller has never been studied theoretically. Hence, the SISO PPF controller for the single degree-of-freedom system was first investigated and then control parameters including gain, the filter frequency, and the damping factor of the PPF controller were analyzed in detail thus providing the design methodology for the SISO PPF controller. In the case of real structure. there are infinite number of natural modes so that some modes are to be controlled by a limited number of actuator and sensor. Based on the theoretical results on the SISO PPF controller, the stability condition for the multi-input multi-output PPF controller was derived when only the few number of modes are to be controlled. The control spillover problem is also discussed in detail.

Active Vibration Control Experiment on Cylindrical Shell equipped with MFC Actuators (MFC 작동기를 이용한 실린더 쉘의 능동진동제어 실험)

  • Bae, Byung-Chan;Jung, Moon-San;Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.457-462
    • /
    • 2006
  • This paper is concerned with the active vibration control experiment on cylindrical shell equipped with Macro Fiber Composite(MFC) actuators. The MFC actuators were glued to the cylindrical shell in circumferential directions. To verify the theoretical result, vibration test using impact hammer and accelerometer was carried out. It was found from experiments that theoretical result predicts experimental result to some extent. The positive position feedback controllers were designed and applied to the test article. It was observed that the resonant amplitude of the fundamental mode was reduced by 20dB thus achieving active vibration control. The active vibration control of the response subject to non resonant excitation has been of interest. We developed the combination of the positive position feedback controller which can cope with the fundamental mode and the positive position feedback controller which can counteract the external disturbance with non resonant frequency. It was found from experiments that the hybrid controller can suppress the vibration amplitude successfully.

  • PDF

Self-Sensing Magnetic Suspension System using an LC Resonant Circuit with a Positive Position Feedback Controller (LC공진 회로와 PPF제어기를 이용한 자체 측정식 자기 서스펜션 시스템)

  • 최창환;박기환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.7
    • /
    • pp.787-793
    • /
    • 1999
  • A self-sensing magnetic suspension system utilizing a LC resonant circuit is proposed by using the characteristic that the inductance of the magnetic system is varied with respect to the air gap displacement. An external capacitor is added into the electric system to make the levitation system be statically stable system, which much relieves the control effort required to stabilize the magnetic suspension system of haying an intrinsic unstable nature. For the realization of the self- sensing magnetically levitated system, an amplitude modulation / demodulation method is used with a positive position feedback controller Experimental results are presented to validate the proposed method.

  • PDF

Active Vibration Control of Structure Using Active Tuned Mass Damper and Modified PPF Controller (능동동조질량감쇠기와 수정 PPF 제어기를 이용한 구조물의 능동진동제어)

  • Kim, Ki-Young;Kwak, Moon-K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.550-555
    • /
    • 2007
  • This paper is concerned with the active vibration control of building structure by means of the active tuned mass damper and the modified positive position feedback controller. To this end, one-degree-of-freedom spring-mass-damper system equipped with ATMD is considered. The stability condition for the addressed system when applying the proposed PPF controller is derived by Routh-Hurwitz stability criterion. The stability condition shows that the modified PPF controller is absolutely stable if the controller gain is positive, so that the modified PPF controller can be used without difficulty. Theoretical study shows that the modified PPF controller can effectively suppress vibrations as the original PPF controller does in smart structure applications. To investigate the validity of the modified PPF controller, a simple experimental structure with an ATMD system driven by DC motor was built. The modified PPF control algorithm was implemented on Atmel 128 microcontroller. The experimental result shows that the modified PPF controller can also suppress vibrations for the real structure.

  • PDF