• 제목/요약/키워드: positive initial energy

검색결과 96건 처리시간 0.026초

Effects of Dietary Energy Density on Growth, Carcass Quality and mRNA Expression of Fatty Acid Synthase and Hormone-sensitive Lipase in Finishing Pigs

  • Liu, Z.H.;Yang, F.Y.;Kong, L.J.;Lai, C.H.;Piao, X.S.;Gu, Y.H.;Ou, X.Q.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제20권10호
    • /
    • pp.1587-1593
    • /
    • 2007
  • A single factorial experiment was conducted to test the effects of three dietary levels of energy on mRNA expression of fatty acid synthase (FAS-mRNA) and hormone-sensitive lipase (HSL-mRNA) and their association with intramuscular fat in finishing pigs. 72 crossbred (Large $White{\times}Rongchang$) barrows with an average initial body weight of 20.71 (s.e. 0.1) kg, were randomly allotted to three dietary treatments (11.75, 13.05 and 14.36 MJ DE/kg) and fed until slaughtered at 100 or 101 kg. The diets were iso-nitrogenous and iso-essential amino acids. The growth performances including the duration of finishing were changed linearly (p<0.05) or quadratically (p<0.05) with increased dietary energy levels. The effects of dietary energy content on the percentage of external fat, intramuscular backfat and the fat thickness were linear (p<0.05). The content of dietary energy increased FAS-mRNA linearly or quadratically, while HSL-mRNA decreased linearly or quadratically in backfat and Longissmus dorsi muscle. Meanwhile, significant positive correlations (p<0.05) were found between energy level and intramuscular fat, FAS-mRNA or the ratio of FAS-mRNA to HSL-mRNA, between the ratio of FAS-mRNA to HSL-mRNA and intramuscular fat. However, the correlations between HSL mRNA and dietary energy or intramuscular fat were negative (p<0.05). The results indicated that dietary energy level regulates lipid accumulation, especially intramuscular fat, possibly by modulating the mRNA of FAS and HSL together rather than individually.

태양광모듈 생산 증설투자에 대한 의사결정: 실물옵션모형에 의한 경영유연성 가치 분석 (On Determining the Size and the Timing of the Capacity Expansion in PV Module Manufacturing: Management Flexibility in Real Options Model)

  • 김경남;선우석호
    • 신재생에너지
    • /
    • 제7권2호
    • /
    • pp.18-27
    • /
    • 2011
  • Management flexibility to adapt its future actions in response to altered future market conditions can expand the value of an investment opportunity by improving its upside potential without the change in the downside losses. Module manufacturers in solar industry continuously have to decide how much and when its production capacity should be expanded with regards to the demand in the global markets. Either over- or under-investment can cause sunk and/or opportunity costs to the module manufacturers. Option of exercising the additional investments only on favorable opportunities can increase total value of the investment. This paper analyzes the case which shows that the expansion of production capacity with more expandibility can have more value than the rigid plan of capacity expansion. The expansion option value is equivalent to KRW 38.286 billion, thus switching the negative NPV of the initial investment opportunity into the positive value. High volatility and the high growth in the cashflows as the major business features of the renewable energy provide condition where real options can play the crucial role in increasing the investment value as well as in determining the size and timing of capacity expansion in the course of capital budgeting process.

Numerical simulation on strata behaviours of TCCWF influenced by coal-rock combined body

  • Cheng, Zhanbo;Pan, Weidong;Li, Xinyuan;Sun, Wenbin
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.269-282
    • /
    • 2019
  • Due to top-coal and immediate roof as cushion layer connecting with support and overlying strata, it can make significant influence on strata behaviors in fully mechanical top-coal caving working face (TCCWF). Taking Qingdong 828 working face as engineering background, $FLAC^{3D}$ and $UDEC^{2D}$ were adopted to explore the influence of top-coal thickness (TCT), immediate roof thickness (IRT), top-coal elastic modulus (TCEM) and immediate roof elastic modulus (IREM) on the vertical stress and vertical subsidence of roof, caving distance, and support resistance. The results show that the maximum roof subsidence increases with the increase of TCT and IRT as well as the decrease of TCEM and IREM, which is totally opposite to vertical stress in roof-control distance. Moreover, although the increase of TCEM and IREM leading to the increase of peak value of abutment pressure, the position and distribution range have no significant change. Under the condition of initial weighting occurrence, support resistance has negative and positive relationship with physical parameters (e.g., TCT and IRT) and mechanical properties (e.g., TCEM and IREM), respectively.

$TiO_2$ 광촉매를 처리한 Diazinon의 광분해에 관한 연구 (The study for photodegradation of diazinon using $TiO_2$ photocatalyst)

  • 류성필;오윤근
    • 한국환경과학회지
    • /
    • 제9권2호
    • /
    • pp.151-158
    • /
    • 2000
  • Considerable interest has been shown in recent years towards utilizing $TiO_2$ particles as a photocatalyst in the degradation of harmful organic contaminants. In this study, photocatalytic degradation of diazinon which is extensively used as a pesticide in the agriculture field, has been investigated with UV-illuminated $TiO_2$ weight, UV wavelength, pH of the solution. Photodegradation rate increased with decreasing initial concentration of diazinon and with increasing pH of the solution. Photodegradation rate increased with increasing $TiO_2$ weight, but was nearly the same at $TiO_2$ weight of 1g/$\ell$, 2 g/$\ell$, i.e., for initial diazinon concentratin of 5 mg/$\ell$. UV wavelength affecting on the degradation rate of diazinon decreased in the order of 254 nm>312 nm> 365 nm. For $TiO_2$ weight of 1 g/$\ell$and initial diazinon concentration of 5 mg/$\ell$, the photodegradation removal of diazinon was 100% after 130 min in the case of 254 nm, but 95% in the case of 312 nm, and 84% in the case of 365nm, after 180 min. The photodegradation of diazinon followed a first order or a pseudo - first order reaction rate. For initial diazinon concentration of 5 mg/$\ell$, the rate constants(k) in UV and $TiO_2$(1 g/$\ell$)/UV system were $0.006 min^{-1} and 0.0252 min^{-1} at 254 nm, 0.0055 min^{-1} and 0.0104 min^{-1} at 312 nm, and 0.004 min^{-1}$ at 365 nm respectively.

  • PDF

리튬이온 이차전지용 양극물질로서 NaxFe2(CN)6의 전기화학적 성능개선 연구 (Enhanced Electrochemical Performance of NaxFe2(CN)6 Positive Electrode Materials for Lithium-ion Batteries)

  • 유성태;윤승주;강정민;김해빈;류지헌
    • 전기화학회지
    • /
    • 제23권1호
    • /
    • pp.11-17
    • /
    • 2020
  • 프러시안 블루 유사체(Prussian blue analogue)중 가격이 낮은 철(Fe)을 기반으로 하는 Fe2(CN)6와 NaxFe2(CN)6를 침전법으로 합성하여 리튬이온 이차전지용 양극재료로 사용하고자 하였다. Fe2(CN)6는 34.6 mAh g-1의 낮은 가역용량을 발현하였으나, 소듐이 포함된 NaxFe2(CN)6는 방전을 먼저 진행하는 경우에 107.5 mAh g-1의 가역용량을 나타내고, 충전을 먼저 진행하여 구조 내의 소듐을 제거한 후에 사용하는 경우에는 더 높은 용량인 114.1 mAh g-1의 가역용량을 발현하였으며 사이클 수명도 더욱 향상되었다. 그리고, NaxFe2(CN)6의 합성과정에서 0℃, 상온, 60℃의 각각 다른 반응온도를 적용하여 합성하였다. 합성온도에 상관없이 NaxFe2(CN)6는 유사한 초기 가역용량을 나타내었으나, 낮은 온도에서 합성된 경우일 수록 결정자의 크기가 작게 형성되었고, 향상된 사이클 수명을 나타내었다. 0℃에서 합성된 시료의 경우가 가장 사이클 수명이 우수하여 120번째 사이클에서 86.4 mAh g-1의 용량을 나타내며 초기용량의 76.8%를 유지하였다.

A NUMERICAL METHOD TO ANALYZE GEOMETRIC FACTORS OF A SPACE PARTICLE DETECTOR RELATIVE TO OMNIDIRECTIONAL PROTON AND ELECTRON FLUXES

  • Pak, Sungmin;Shin, Yuchul;Woo, Ju;Seon, Jongho
    • 천문학회지
    • /
    • 제51권4호
    • /
    • pp.111-117
    • /
    • 2018
  • A numerical method is proposed to calculate the response of detectors measuring particle energies from incident isotropic fluxes of electrons and positive ions. The isotropic flux is generated by injecting particles moving radially inward on a hypothetical, spherical surface encompassing the detectors. A geometric projection of the field-of-view from the detectors onto the spherical surface allows for the identification of initial positions and momenta corresponding to the clear field-of-view of the detectors. The contamination of detector responses by particles penetrating through, or scattering off, the structure is also similarly identified by tracing the initial positions and momenta of the detected particles. The relative contribution from the contaminating particles is calculated using GEANT4 to obtain the geometric factor of the instrument as a function of the energy. This calculation clearly shows that the geometric factor is a strong function of incident particle energies. The current investigation provides a simple and decisive method to analyze the instrument geometric factor, which is a complicated function of contributions from the anticipated field-of-view particles, together with penetrating or scattered particles.

Environmental Damage Theory Applicable to Kenya

  • ONYANGO, James;KIANO, Elvis;SAINA, Ernest
    • Asian Journal of Business Environment
    • /
    • 제11권1호
    • /
    • pp.39-50
    • /
    • 2021
  • Purpose: This study seeks to establish the environmental damage theory applicable to Kenya. The analysis is based on annual data drawn from World Bank on carbon dioxide emissions (CO2e) and gross domestic product per capita (GDPPC) for Kenya spanning 1963 to 2017. Research Methodology: The study adopts explanatory research design and autoregressive distributed lag model for analysis. Results: The results revealed a coefficient of -0.017 for GDPPC and 0.004 for GDPPC squared indicating that economic growth has negative effect on CO2e in the initial stages of growth but positive effect in the high growth regime with the marginal effect being higher in the initial growth regime. The findings suggest a U-shaped relationship consistent with Brundtland Curve Hypothesis (BCH). Conclusions: The findings emphasize the need for sustainable development path that enables present generations to meet own needs without compromising the capacity of future generations to meet their own. Sustainable development may include, investment in renewable energies like wind, solar and adoption of energy efficient technologies in production and manufacturing. The study concludes that BCH is applicable to Kenya and that developing affordable and effective mechanisms to boost sustainable development implementation is necessary to decrease the anthropogenic impact in the environment without any attendant reduction in the economic growth.

사료 내 에너지 수준 및 비테인 첨가 급여가 고온기 육성돈의 영양소 소화율 및 생리학적 변화에 미치는 영향 (Effects of Dietary Energy and Levels of Betaine on Nutrient Digestibility and Physiological Responses in Growing Pigs with Heat Stress)

  • 민예진;정용대;김두완;이수협;김기현;유동조;김영화
    • 동물자원연구
    • /
    • 제28권2호
    • /
    • pp.56-63
    • /
    • 2017
  • 본 연구는 고온기 때 사료 내 다른 에너지 수준 및 비테인 첨가 급여가 육성돈의 영양소 소화율 및 생리학적 변화에 미치는 영향을 구명하기 위해 실시하였다. 실험동물은 삼원교잡종($L{\times}Y{\times}D$; initial body weight, $73.5{\pm}0.5kg$) 거세 수퇘지 12두를 사용하였고 대사틀에 배치하였다. 실험기간은 고온기인 7~8월에 실시하였다. 실험계획은 에너지 2수준(3,300 및 3,400kcal/kg)과 비테인 2수준(0 및 0.5%)이며 $4{\times}4$ Latin square로 하였다. 조단백질 소화율은 고에너지 사료(3,400kcal/kg)가 저에너지 사료보다 유의적으로 높았다(p<0.01). 그러나, 비테인급여는 영양소소화율에 영향을 미치지 않았다. 혈액생화학적 분석 결과에서는 에너지 수준 및 비테인 첨가가 육성돈 내 생리적 변화를 보이지 않았다. 면역반응을 나타내는 혈중 IgG에서는 고에너지 사료가 저에너지사료보다 높았으나(p<0.05) 스트레스 지표를 나타내는 cortisol농도에서는 차이가 나지 않았고, 비테인 첨가급여는 IgG 및 cortisol 농도 변화를 나타내지 않았다. 결론적으로 사료 내 비테인 첨가급여보다 에너지 수준을 높이는 것이 돼지 체내에 더 긍정적인 효과를 보이며, 여름철 고온스트레스를 받는 돼지 사료 내 고에너지를 급여했을 때 어떠한 결과가 나오는지 추후 더 연구해 볼 만한 것으로 사료된다.

Comparative Study on Adsorptive Characteristics of Diazinon in Water by Various Adsorbents

  • Ryoo, Keon Sang;Jung, Sun Young;Sim, Hun;Choi, Jong-Ha
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권9호
    • /
    • pp.2753-2759
    • /
    • 2013
  • The aim of the present study is to explore the possibility of utilizing fly ash and loess, as alternative to activated carbon, for the adsorption of diazinon in water. Batch adsorption experiment was performed to evaluate the influences of various factors like initial concentration, contact time and temperature on the adsorption of diazinon. The adsorption data shows that fly ash is not effective for the adsorption of diazinon. The equilibrium data for both activated carbon and loess were fitted well to the Freundlich isotherm model. The pseudo-second-order kinetic model appeared to be the better-fitting model because it has higher $R^2$ compared to the pseudo-first-order kinetic model. The thermodynamic parameters such as free energy (${\Delta}G$), the enthalpy (${\Delta}H$) and the entropy (${\Delta}S$) were calculated. Contrary to loess, the ${\Delta}G$ values of activated carbon were negative at the studied temperatures. It indicates that the adsorption of diazinon by activated carbon is a favorable and spontaneous process. The positive ${\Delta}H$ values of activated carbon and loess suggest that the diazinon adsorption process is endothermic in nature. In addition, the positive ${\Delta}S$ values show that increased randomness occurs at the solid/solution surface during the adsorption of diazinon.

Ionic Additives to Increase Electrochemical Utilization of Sulfur Cathode for Li-S Batteries

  • Seong, Min Ji;Yim, Taeeun
    • Journal of Electrochemical Science and Technology
    • /
    • 제12권2호
    • /
    • pp.279-284
    • /
    • 2021
  • The high theoretical specific capacity of lithium-sulfur (Li-S) batteries makes them a more promising energy storage system than conventional lithium-ion batteries (LIBs). However, the slow kinetics of the electrochemical conversion reaction seriously hinders the utilization of Li-S as an active battery material and has prevented the successful application of Li-S cells. Therefore, exploration of alternatives that can overcome the sluggish electrochemical reaction is necessary to increase the performance of Li-S batteries. In this work, an ionic liquid (IL) is proposed as a functional additive to promote the electrochemical reactivity of the Li-S cell. The sluggish electrochemical reaction is mainly caused by precipitation of low-order polysulfide (l-PS) onto the positive electrode, so the IL is adopted as a solubilizer to remove the precipitated l-PS from the positive electrode to promote additional electron transfer reactions. The ILs effectively dissolve l-PS and greatly improve the electrochemical performance by allowing greater utilization of l-PS, which results in a higher initial specific capacity, together with a moderate retention rate. The results presented here confirmed that the use of an IL as an additive is quite effective at enhancing the overall performance of the Li-S cell and this understanding will enable the construction of highly efficient Li-S batteries.