• Title/Summary/Keyword: position-based dynamics

Search Result 228, Processing Time 0.03 seconds

Study on the Selection of Optimal Operation Position Using AI Techniques (인공지능 기법에 의한 최적 운항자세 선정에 관한 연구)

  • Dong-Woo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.6
    • /
    • pp.681-687
    • /
    • 2023
  • The selection technique for optimal operation position selection technique is used to present the initial bow and stern draft with minimum resistance, for achievingthat is, the optimal fuel consumption efficiency at a given operating displacement and speed. The main purpose of this studypaper is to develop a program to select the optimal operating position with maximum energy efficiency under given operating conditions based on the effective power data of the target ship. This program was written as a Python-based GUI (Graphic User Interface) usingbased on artificial intelligence techniques sucho that ship owners could easily use the GUIit. In the process, tThe introduction of the target ship, the collection of effective power data through computational fluid dynamics (CFD), the learning method of the effective power model using deep learning, and the program for presenting the optimal operation position using the deep neural network (DNN) model were specifically explained. Ships are loaded and unloaded for each operation, which changes the cargo load and changes the displacement. The shipowners wants to know the optimal operating position with minimum resistance, that is, maximum energy efficiency, according to the given speed of each displacement. The developed GUI can be installed on the ship's tablet PC and application and used to determineselect the optimal operating position.

A Study on the Relation between Towing Force of Tow Vessel and Towing Point and Behavior of Towed Ship (예인력과 피예인선의 예인 지점과 거동에 관한 연구)

  • Nam, Taek-Kun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.19 no.6
    • /
    • pp.637-642
    • /
    • 2013
  • In this paper, an analysis results of towing force and towing points which are dominating factors to determine the behavior of towed ship are introduced. The towing force and towing points to achive the desired posture and its position of the towed vessel are derived based on simplified dynamics and linearization method. LQR algorithm for posture control is applied to linearized system and numerical simulation is also executed. Force based on COG(cneter of gravity) and gain of controller to achieve desired posture for target vessel are obtained by using Riccati matrix equation and pseudo inverse matrix is applied to analyze the relation between the derived force and its towing point. Based on this analysis method, towing force need to move the towed vessel from its initial position to target position can be calculated. The towing method including towing point and direction is also considered on this method. Finally, the relation between towing force and towing point is confirmed from the analysis and the results can be applied to arrangement of tug boats during salvage works.

The Effects of the IERS Conventions (2010) on High Precision Orbit Propagation

  • Roh, Kyoung-Min;Choi, Byung-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • v.31 no.1
    • /
    • pp.41-50
    • /
    • 2014
  • The Earth is not perfectly spherical and its rotational axis is not fixed in space, and these geophysical and kinematic irregularities work as dominant perturbations in satellite orbit propagation. The International Earth Rotation Service (IERS) provides the Conventions as guidelines for using the Earth's model and the reference time and coordinate systems defined by the International Astronomical Union (IAU). These guidelines are directly applied to model orbital dynamics of Earth satellites. In the present work, the effects of the latest conventions released in 2010 on orbit propagation are investigated by comparison with cases of applying the previous guidelines, IERS Conventions (2003). All seven major updates are tested, i.e., for the models of the precession/nutation, the geopotential, the ocean tides, the ocean pole tides, the free core nutation, the polar motion, and the solar system ephemeris. The resultant position differences for one week of orbit propagation range from tens of meters for the geopotential model change from EGM96 to EGM2008 to a few mm for the precession/nutation model change from IAU2000 to IAU2006. The along-track differences vary secularly while the cross-track components show periodic variation. However, the radial-track position differences are very small compared with the other components in all cases. These phenomena reflect the variation of the ascending node and the argument of latitude. The reason is that the changed models tested in the current study can be regarded as small fluctuations of the geopotential model from the point of view of orbital dynamics. The ascending node and the argument of latitude are more sensitive to the geopotential than the other elements. This study contributes to understanding of the relation between the Earth's geophysical properties and orbital motion of satellites as well as satellite-based observations.

Numerical Simulation for Transonic Wing-Body Configuration using CFD (CFD를 이용한 천음속 날개-동체 형상 해석)

  • Kim, Younghwa;Kang, Eunji;Ahn, Hyokeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.233-240
    • /
    • 2017
  • The flowfield around transonic wing-body configuration was simulated using in-house CFD code and compared with the experimental data to understand the influence of several features of CFD(Computational Fluid Dynamics) ; grid dependency, turbulence models, spatial discretization, and viscosity. The wing-body configuration consists of a simple planform RAE Wing 'A' with an RAE 101 airfoil section and an axisymmetric body. The in-house CFD code is a compressible Euler/Navier-Stokes solver based on unstructured grid. For the turbulence model, the $k-{\omega}$ model, the Spalart-Allmaras model, and the $k-{\omega}$ SST model were applied. For the spatial discretization method, the central differencing scheme with Jameson's artificial viscosity and Roe's upwind differencing scheme were applied. The results calculated were generally in good agreement with experimental data. However, it was shown that the pressure distribution and shock-wave position were slightly affected by the turbulence models and the spatial discretization methods. It was known that the turbulent viscous effect should be considered in order to predict the accurate shock wave position.

Analysis of the Flow Field of Carrier-Based Aircraft Exhaust Jets Impact on the Flight Deck

  • Yue, Kuizhi;Sun, Yicheng;Liu, Hu;Guo, Weigang
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • In order to provide some references for suitability of carrier-based aircrafts, this paper studies the flow field of exhaust jets and its impact on the flight deck. The geometrical models of aircraft carrier and carrier-based aircrafts are firstly built, on which unstructured tetrahedral meshes are generated for numerical analysis. Then, this paper simulates the flow field of exhaust jets to evaluate its impact on the Jet Blast Deflector (JBD) and the flight deck, when four carrier-based aircrafts are ready to start off in the bow. The standard k-${\varepsilon}$ equations, three-dimension N-S equations and the Computational Fluid Dynamics (CFD) theory are used in the analysis process. To solve the equations, the thermal coupling of the wind and the jet flow are also considered. The velocity and temperature distributions are provided with the simulation of the CFD software, FLUENT. The results indicate that: (1) this analytical method can be used to simulate aerodynamic problems with complex geometrical models, and the results are of high reliability; (2) the safety working area, the installation scheme of the JBD and the arrangement of the take-off position can be optimized through analysis.

LMI-Based Fuzzy Control for Wheeled Mobile Robot (바퀴형 이동로봇의 LMI기반 퍼지 제어)

  • Choi, Hyun-Eui;Kim, Tae-Kue;Park, Seung-Kyu;Yoon, Tae-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1719_1720
    • /
    • 2009
  • Wheeled mobile robot has different mobility and steerability which determined by type of wheel and it's arrangement. Generally wheeled mobile robot's dynamics are nonlinear and various control methods have studied to control the mobile robot efficiently. In this paper, a T-S fuzzy modeling of a 2-wheeled mobile robot is mand a stable LMI-based state feedback fuzzy controller is designed and applied to the position control of the mobile robot for the reference trajectory following. Also, the verification of the designed controller is done by computer simulation.

  • PDF

A New Sliding-Surface-Based Tracking Control of Nonholonomic Mobile Robots (새로운 슬라이딩 표면에 기반한 비홀로노믹 이동 로봇의 추종 제어)

  • Park, Bong-Seok;Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.842-847
    • /
    • 2008
  • This paper proposes a new sliding-surface-based tracking control system for nonholonomic mobile robots with disturbance. To design a robust controller, we consider the kinematic model and the dynamic model of mobile robots with disturbance. We also propose a new sliding surface to solve the problem of previous study. That is, since the new sliding surface is composed of differentiable functions unlike the previous study, we can obtain the control law for arbitrary trajectories without any constraints. From the Lyapunov stability theory, we prove that the position tracking errors and the heading direction error converge to zero. Finally, we perform the computer simulations to demonstrate the performance of the proposed control system.

Sliding Mode Control with RLSN Predictor-Based Perturbation Estimation (RLSN 예측기 기반 섭동 추정기를 갖는 슬라이딩 모드 제어)

  • Nam Yun-Joo;Lee Yuk-Hyung;Park Myeong-Kwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.8 s.251
    • /
    • pp.880-888
    • /
    • 2006
  • This paper presents the sliding mode control with the perturbation estimator for a nonlinear control system in the presence of perturbations including external disturbances, unpredictable parameter variations, ana unstructured dynamics. The proposed perturbation estimator is based on the Recursive Linear Smoothed Newton predictive algorithm so that it is effective to attenuate an undesired noise in high frequency band and to predict the present perturbation signal from the previous ones. Compared to conventional sliding mode control (SMC) and sliding mode control with perturbation estimation (SMCPE) introduced by Elmali and Olgac, the control algorithm proposed in this study can offer better tracking control performances and more feasible estimation characteristics. The effectiveness and superiority of the proposed control strategy are demonstrated by a series of simulations on the position tracking control of a simple two-link robot manipulator subject to velocity feedback signals including white noises.

Inverse Kinematic and Dynamic Analyses of 6-DOF PUS Type parallel Manipulators

  • Kim, Jong-Phil;Jeha Ryu
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.13-23
    • /
    • 2002
  • This paper presents inverse kinematic and dynamic analyses of HexaSlide type six degree-of-freedom parallel manipulators. The HexaSlide type parallel manipulators (HSM) can be characterized as an architecture with constant link lengths that are attached to moving sliders on the ground and to a mobile platform. In the inverse kinematic analyses, the slider and link motion (position, velocity, and acceleration) is computed given the desired mobile platform motion. Based on the inverse kinematic analysis, in order to compute the required actuator forces given the desired platform motion, inverse dynamic equations of motion of a parallel manipulator is derived by the Newton-Euler approach. In this derivation, the joint friction as well as all link inertia are included. Relative importance of the link inertia and joint frictions on the computed torque is investigated by computer simulations. It is expected that the inverse kinematic and dynamic equations can be used in the computed torque control and model-based adaptive control strategies.

A study on the microcomputer-based adaptive control system of a steam generator (적응제어알고리즘을 이용한 원자력발전소용 증기발생기 수위제어 시스템에 관한 연구)

  • 배병환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.658-663
    • /
    • 1987
  • The new controller developed here, which is the facility with only one measurement, is a new concept for the level controller of the existing nuclear steam generator. A MACS (Microcomputer-based Adaptive Control System of a Steam Generator) is quite practical and efficient, and has also simple structure and higher flexibility in the installment for actual plant. A key ingredient of this system is adaptive regulator which can calculate adaptive, optimal valve position in response to changes in the dynamics of the process and the disturbances. In spite of many difficulties in the steam generator water level control at low power, it can be concluded from the experimental and simulation results, that the MACS can provide optimal, robust steam generator level control from zero to full power. The amount of the control input effort can be reduced by adjusting the weighting factor. However, the steady state water level errors are generated. To avoid the steady errors, the different adaptive algorithm should be investigated in the future. The 3 second sampling time is acceptable for this system. However, action should be taken to shorten the sampling time for better digital control.

  • PDF