• Title/Summary/Keyword: position estimation,

Search Result 1,615, Processing Time 0.03 seconds

Estimation of Impurities from Commercially Available Glycyrrhizin Standards by the HPLC/ESI-MS (HPLC/ESI-MS에 의한 글리시리진 표준품의 불순물 추정)

  • Myung, Seung-Woon;Min, Hye-Ki;Kim, Myungsoo;Kim, Young Lim;Park, Seong-Soo;Cho, Jung Hee;Lee, Jong-Chul;Cho, Hyun-Woo;Kim, Taek-Jae
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.504-510
    • /
    • 2000
  • The impurity profiles from the raw materials of glycyrrhizin were performed by the high performance liquid chromatography (HPLC)/electrospray ionization (ESI)- mass spectrometry (MS). For the HPLC experiment, a $C_{18}$($3.9{\times}300mm$, $10{\mu}m$) column was used and the mobile phase was acetic acid/$H_2O$ (1:10):acetonitrile=3:2 with a flow rate of 0.8 ml/min. The effluent was splitted into the ratio of 50:1 and went into the ESI-MS. Three to six impurities were found and informed of the identification of the structure of the impurities by ESI-MS. And the structures of impurities were suggested to a hydroxy-glycyrrhizin which is added with hydroxy group (-OH) in the glycyrrhetic acid moiety and a reduced-glycyrrhizin which the position of 12 of the glycyrrhetic acid moiety is reduced. The purities of the standard materials were about 90%.

  • PDF

A Study on Estimation of Gait Acceleration Signal Using Gait Video Signal in Wearable Device (걸음걸이 비디오를 활용한 웨어러블 기기 사용자 걸음걸이 가속도 신호 추정)

  • Lee, Duhyeong;Choi, Wonsuk;Lee, Dong Hoon
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.27 no.6
    • /
    • pp.1405-1417
    • /
    • 2017
  • Researches that apply the acceleration signal due to user's gait measured at the wearable device to the authentication technology are being introduced recently. The gait acceleration signal based authentication technologies introduced so far have assumed that an attacker can obtain a user's gait acceleration signal only by attaching accelerometer directly to user's body. And the practical attack method for gait acceleration signal based authentication technology is mimic attack and it uses a person whose physical condition is similar to the victim or identifies the gait characteristics through the video of the gait of the victim. However, mimic attack is not effective and attack success rate is also very low, so it is not considered a serious threat. In this paper, we propose Video Gait attack as a new attack method for gait acceleration signal based authentication technology. It is possible to know the position of the wearable device from the user's gait video signal and generate a signal that is very similar to the accelerometer's signal using dynamic equation. We compare the user's gait acceleration signal and the signal that is calculated from video of user's gait and dynamic equation with experiment data collected from eight subjects.

Inequalities in Self-rated Health among Middle-aged and Young-old Waged Workers: The Contribution of Precarious Employment and Social Capital (중고령기에서 초기노년기에 걸친 주관적 건강상태의 격차: 고용형태와 사회적 자본의 효과를 중심으로)

  • Ahn, Joonhee
    • 한국노년학
    • /
    • v.37 no.3
    • /
    • pp.727-745
    • /
    • 2017
  • This study purported to examine the effects of precarious employment and social capital on the changes of self-rated health status among the middle aged and the young-old population in South Korea. The study analyzed 12 year follow-up data generated by the Korean Labor and Income Panel Study(KLIPS 6-17), which included 10532 employed subjects aged 55 to 75. Multi-level growth curve modeling was performed by fixed and random effect models using STATA 13.0 program. Afterwards, Hausman test was performed, which resulted in support of the estimation by fixed effect model. The results showed that a day labor position was significant factor affecting the deteriorated changes of self-rated health status over time. In addition, wage, weekly working hours, and private/relational social capitals were also found to be significant factors affecting the changes of the self-rated health status. The results supported the divergence hypothesis as well as the cumulative advantage theory. Efforts should be made to develop and implement various employment support policies and social service programs to alleviate the health inequality of the employed workers over their middle-aged to young-old period.

Genetic Variation of Rhododendron micranthum Based on AFLP and RAPD Analysis (AFLP와 RAPD 방법을 이용한 꼬리진달래(Rhododendron micranthum) 수집종의 유전적 변이 분석)

  • 김남수;김진홍;이주경;김남희;이명숙;이재선;박철호
    • Korean Journal of Plant Resources
    • /
    • v.17 no.3
    • /
    • pp.227-238
    • /
    • 2004
  • Rhododendron micranthum is an endangered species in Korea. In order to develop the strategy of gene diversity conservation, estimation of the amount of genetic diversity, the genetic variation and relationship in the native populations of Rh. micranthum was performed on the basis of AFLP and RAPD analysis. Analysis of 56 accessions derived from 6 populations of Rh. micranthum with four AFLP primer combinations and ten RAPD primers detected a total of 33 polymorphic AFLP fragments and 15 polymorphic RAPD fragments, respectively. By UPGMA cluster analysis with molecular markers, the 56 accessions were grouped into three major clusters at 73.3% genetic similarity; group I consists of most accessions of populations I, II, IV, V and Ⅵ, group II consists of 7 accessions of population III, and group III consists of only two accessions of population IV. The geographic locations of the most accessions derived from six populations were not related to their position in the UPGMA cluster analysis, except for several accessions of populations III and IV. The genetic similarity of among six populations measured by AFLP and RAPD markers ranged from 0.66 to 0.99. Among them, population Ⅵ showed the highest GS with means of 0.87, while population I showed the lowest GS with means of 0.78. This result will be useful for designing the strategy of conservation in the native populations of Rh. micranthum.

A Prediction Method on the Accelerometer Data of the Formation Flying Low Earth Orbit Satellites Using Neural Network (신경망 모델을 사용한 편대비행 저궤도위성 가속도계 데이터 예측 기법)

  • Kim, Mingyu;Kim, Jeongrae
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_1
    • /
    • pp.927-938
    • /
    • 2021
  • A similar magnitude of non-gravitational perturbations are act on the formation flying low earth orbit satellites with a certain time difference. Using this temporal correlation, the non-gravity acceleration of the low earth orbiting satellites can be transferred for the othersatellites. There is a period in which the accelerometer data of one satellite is unavailable for GRACE and GRACE-FO satellites. In this case, the accelerometer data transplant method described above is officially used to recover the accelerometer data at the Jet Propulsion Laboratory (JPL). In this paper, we proposed a model for predicting accelerometer data of formation flying low earth orbit satellites using a neural network (NN) model to improve the estimation accuracy of the transplant method. Although the transplant method cannot reflect the satellite's position and space environmental factors, the NN model can use them as model inputs to increase the prediction accuracy. A prediction test of an accelerometer data using NN model was performed for one month, and the prediction accuracy was compared with the transplant method. The NN model outperformsthe transplant method with 55.0% and 40.1% error reduction in the along-track and radial directions, respectively.

Estimation of the Original Location of Haechi (Haetae) Statues in Front of Gwanghwamun Gate Using Archival Photos from Early 1900s and Newly Taken Photos by Image Analysis (1900년대 초반의 기록사진과 디지털 카메라 사진분석을 활용한 광화문 앞 해치상의 원위치 추정)

  • Oh, Hyundok;Nam, Ho Hyun;Yoo, Yeongsik;Kim, Jung Gon;Kang, Kitaek;Yoo, Woo Sik
    • Journal of Conservation Science
    • /
    • v.37 no.5
    • /
    • pp.491-504
    • /
    • 2021
  • Gwanghwamun Gate of Gyeongbokgung Palace was dismantled and relocated during the Japanese colonial period, destroyed during the Korean War, reconstructed with reinforced concrete in 1968, and finally erected at its present location in 2010. A pair of Haechi statues located in front of Gwanghwamun was dismantled and relocated several times, and the statues have yet to be returned precisely to their original positions. This study assesses the historical accuracy of their current placement under the Gwanghwamun Square Restructuring Project of the Seoul Metropolitan Government and the Cultural Heritage Administration based on archival photos from the early 1900s, and proposes a method to estimate the original positions of the Haechi through image analysis of contemporary photographs and recent digital camera photos. We estimated the original position of the Haechi before the Japanese colonial period by identifying the shooting location of the archival photo and reproducing contemporary photographs by calculating the angle and distance to the Haechi from the shooting location. The leftmost and rightmost Haechi were originally located about 9.6 m to the east and 7.4 m to the north and about 1.9 m to the west and 8.0 m to the north, respectively, of their current location indicators. As the first attempt to determine the original location of a building and its accessories using archival photos, this study launches a new scientific methodology for the restoration of cultural properties.

Comparison and Analysis of Observation Data of Rainfall Sensor for Vehicle and Rainfall Station (차량용 강우센서와 강우관측소 관측자료 비교분석)

  • Lee, Chung Dae;Lee, Byung Hyun;Cho, Hyeong Je;Kim, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.783-791
    • /
    • 2018
  • The biased estimation of low density rainfall network and radar rainfall has limited application to extreme rainfall in a small area. To improve this, more rainfall information needs to be produced. In this study, we analyzed the applicability of the vehicle rainfall sensor developed and used recently. The developed rainfall sensor was attached to the vehicle to observe the rainfall according to the movement of the vehicle. The analytical method used time series and average rainfall values for observations of rainfall sensors and nearby rainfall stations. The results show that the trend of observed values according to rainfall events shows a certain pattern. It is analyzed that it is caused by various causes such as the difference between the observation position of the rainfall sensor and the nearby rainfall station, the moving speed of the vehicle, and the rainfall observation method. This result shows the possibility of rainfall observation using a rainfall sensor for a vehicle, and it is possible to observe rainfall more precisely through experiments and improvement of rainfall sensors in various conditions in the future.

Study on Compensation Method of Anisotropic H-field Antenna (Loran H-field 안테나의 지향성 보상 기법 연구)

  • Park, Sul-Gee;Son, Pyo-Woong
    • Journal of Navigation and Port Research
    • /
    • v.43 no.3
    • /
    • pp.172-178
    • /
    • 2019
  • Although the needs for providing resilient PNT information are increasing, threats due to the intentional RFI or space weather change are challenging to resolve. eLoran, which is a terrestrial navigation system that use a high-power signal is considered as a best back-up navigation system. Depending on the user's environment in the eLoran system, the user may use one of E-field or H-field antennas. H-field antenna, which has no restriction on setting stable ground and is relatively resistant to noise of general electronic equipment, is composed of two loops, and shows anisotropic gain pattern due to the different measurement at the two loops. Therefore, the H-field antenna's phase estimation value of signal varies depending on its direction even at the static environment. The error due to the direction of the signal should be eliminated if the user want to estimate the own position more precisely. In this paper, a method to compensate the error according to the geometric distribution between the H-field antenna and the transmitting station is proposed. A model was developed to compensate the directional error of H-field antenna based on the signal generated from the eLoran signal simulator. The model is then used to the survey measurement performed in the land area and verify its performance.

A numerical study on the influence of small underground cavities for estimation of slope safety factor (소규모 지하공동이 사면안전율 산정에 미치는 영향에 관한 수치해석 연구)

  • An, Joon-Sang;Kang, Kyung-Nam;Song, Ki-Il;Kim, Byung-Chan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.5
    • /
    • pp.621-640
    • /
    • 2019
  • Quantitative stability assessment of underground cavities can be presented as a factor of safety based on the Shear Strength Reduction Method (SSRM). Also, SSRM is one of the stability evaluation methods commonly used in slope stability analysis. However, there is a lack of research that considers the relationship between the probability of occurrence of cavities in the ground and the potential failure surface of the slope at the same time. In this study, the effect of small underground cavities on the failure behavior of the slope was analyzed by using SSRM. Considering some of the glaciology studies, there is a case that suggests that there is a cavity effect inside the glacier in the condition that the glacier slides. In this study, the stability evaluation of underground cavities and slope stability analysis, where SSRM is used in geotechnical engineering field, was carried out considering simultaneous conditions. The slope stability analysis according to the shape and position change of underground cavities which are likely to occur in the lower part of a mountain road was analyzed by using SSRM in FLAC3D software and the influence of underground cavities on the slope factor of safety was confirmed. If there are underground cavities near slope potential failure surface, it will affect the calculation of a factor of safety. The results of this study are expected to be basic data on slope stability analysis with small underground cavities.

3-dimensional Modeling and Mining Analysis for Open-pit Limestone Mine Stope Using a Rotary-wing Unmanned Aerial Vehicle (회전익 무인항공기를 이용한 노천석회석광산 채굴장 3차원 모델링 및 채굴량 분석)

  • Kang, Seong-Seung;Lee, Geon-Ju;Noh, Jeongdu;Jang, Hyeongdoo;Kim, Sun-Myung;Ko, Chin-Surk
    • The Journal of Engineering Geology
    • /
    • v.28 no.4
    • /
    • pp.701-714
    • /
    • 2018
  • The purpose of this study is to show the possibility of 3-dimensional modeling of open-pit limestone mine by using a rotary-wing unmanned aerial vehicle, a drone, and to estimate the amount of mining before and after mining of limestone by explosive blasting. Analysis of the image duplication of the mine has shown that it is possible to achieve high image quality. Analysis of each axis error at the shooting position after analyzing the distortions through camera calibration was shown the allowable range. As a result of estimating the amount of mining before and after explosive blasting, it was possible to estimate the amount of mining of a wide range quickly and accurately in a relatively short time. In conclusion, it is considered that the drone of a rotary-wing unmanned aerial vehicle can be usefully used for the monitoring of open-pit limestone mines and the estimation of the amount of mining. Furthermore, it is expected that this method will be utilized for periodic monitoring of construction sites and road slopes as well as open-pit mines in the future.