• Title/Summary/Keyword: position detector

Search Result 375, Processing Time 0.025 seconds

HIGH RESOLUTION DELAY LINE READOUT ELECTRONOCS FOR THE TIME 2-D POSITION SENSITIVE DETECTOR (원자외선 분광기의 2차원 위치검출을 위한 고 분해능 지연선 검출회로)

  • 이진근;신종호;민경욱;남욱원;공경남
    • Journal of Astronomy and Space Sciences
    • /
    • v.19 no.1
    • /
    • pp.57-66
    • /
    • 2002
  • We designed two-dimensional position sensitive MCP(mixt.ochannel plate) detector for FIMS, which is composed of MCP, delay line anode, and delay line readout elec-tronics. And also, we fabricated and tested for the operation stability and resolution of the delay line readout electronic system. An anode simulator and a stimulator were used instead of the real MCP and anode during the test to see the electronic contribution to the resolution. The readout electronics was operated stably and showed time resolution of about 560 ps for the spectral direction and about 100 ps for the image direction respectively.

Measurement Method for Fine 6-DOF Displacement of Rigid Bodies (강체의 6자유도 미소 변위 측정)

  • Park, Won-Shik;Cho, Hyung-Suck
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.3
    • /
    • pp.208-219
    • /
    • 2002
  • A novel measurement method to obtain the 6-DOF motions of arbitrary rigid bodies is proposed in this paper. The method adopts a specially fabricated mirror called 3-facet mirror, which looks like a triangular pyramid haying an equilateral cross-sectional shape. The mirror is mounted on the objects to be measured, illuminated by a laser beam having circular profile, and reflects the laser beam in three different directions. Three PSDs(position sensitive detector) detect the three beams reflected by the mirror, respectively. From the signals of the PSDs, we can calculate the 3-dimensional position and orientation of the 3-facet mirror, and thus enabling us to determine the 3-dimensional position and orientation of the objects. In this paper, we model the relationship between the 3-dimensional position and orientation of an object in motion and the outputs of three PSDs. A series of experiments are performed to demonstrate the effectiveness and accuracy of the proposed method. The experimental results show that the proposed sensing system can be an effective means of obtaining 3-dimensional position and orientation of arbitrary objects and provide resonable measurement accuracy.

Improved Lateral Resolution of Interferometric Microscope Using Precision Scanner (정밀 스캐너를 이용한 간섭 현미경의 가로방향 분해능 향상)

  • 박성림;박도민;류재욱;권대갑
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.6
    • /
    • pp.116-123
    • /
    • 1998
  • An interferometric microscope with an improved lateral resolution is presented. The nanometer resolution XY stage is integrated into standard temporal phase shifting interferometer. The nanometer resolution XY stage is used to position specimen in subpixel of CCD detector, therefore CCD detector's sampling is improved. Two scanning algorithms and those simulation results are also presented. The simulation results show that scanning algorithms improve CCD detector's sampling significantly, and interferometeric microscope's lateral resolution is improved also.

  • PDF

Effect of Detector-Misalignment on TOF-PET Detector Performance (검출기 정렬 오차가 TOF-PET 검출기의 성능에 미치는 영향성 평가)

  • Yang, Jingyu;Kang, Jihoon
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.6
    • /
    • pp.841-846
    • /
    • 2019
  • Effect of misalignment on the performance was evaluated for the development of time-of-flight(TOF)-PET detector. A pair of TOF-PET detector consists of Lutetium-yttrium oxyorthosilicate(LYSO) scintillation crystal with a volume of 3 mm × 3 mm × 20 mm and Geiger-mode avalanche photodiodes(GAPD) photo-sensor with a active area of 3.07 mm × 3.07 mm. Analog output signals from TOF-PET detector were sent to the pre-amplifier and then fed into the gain adjust circuit for achievement of gain homogeneity for each detector. The amplified signals were recorded and digitized by data acquisition system based on oscilloscope. The effect of the detector misalignment between LYSO and GAPD was examined for four different alignment offsets of 0.0 mm, 0.5 mm, 1.0 mm and 1.5 mm for a pair of TOF-PET detector. The photopeak position decreased from ~400 mV to ~250 mV with increasing detector misalignment. the energy resolution and time resolution were degraded from 11.6% to 16.2%, and from 477 ps to 632 ps, respectively. This study demonstrated that PET detector performance was degraded considerably depending on the detector misalignment, which would be a critical issue for the development of TOF-PET detector.

Development of Variable Speed Digital Control System for SRM using Simple Position Detector (간단한 위치검출기를 이용한 SRM 가변속 디지털 제어시스템 개발)

  • 천동진;정도영;이상호;이봉섭;박영록
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.202-208
    • /
    • 2001
  • A Switched Reluctance Motor(SRM) has double salient poles structure and the phase windings are wound in stator. SRM hase more simple structure that of other motor, thus manufacture cost is low, mechanically strong, reliable to a poor environment such as high temperature, and maintenance cost is low because of brushless. SRM needs position detector to get rotator position information for phase excitation and tachometer or encoder for constant speed operation. But, this paper doesn\`s use an encoder of high cost for velocity measurement of rotator. Instead of it, the algorithm for position detection and velocity estimation from simple slotted disk has been proposed and developed. To implement variable speed digital control system with velocity estimation algorithm, the TMS320F240-20MIPS fixed point arithmetic processor of TI corporation is used. The experimental results of the developing system are enable to control speed with wide range, not only single pulse, hard chopping mode and soft chopping, ut also variable speed control, and advance angle control.

  • PDF

A New Start-up Method for a Load Commutated Inverter for Large Synchronous Generator of Gas-Turbine

  • An, Hyunsung;Cha, Hanju
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.201-210
    • /
    • 2018
  • This paper proposes a new start-up method for a load commutated inverter (LCI) in a large synchronous gas-turbine generator. The initial rotor position for start-up torque is detected by the proposed initial angle detector, which consists of an integrator and a phase-locked loop. The initial rotor position is accurately detected within 150ms, and the angle difference between the real position and the detected position is less than 1%. The LCI system operates in two modes (forced commutation mode and natural commutation mode) according to operating speed range. The proposed controllers include a forced commutation controller for the low-speed range, a PI speed controller and a PI current controller, where the forced commutation controller is connected to the current controller in parallel. The current controller is modeled by Matlab/Simulink, where a six-pulse delay of the thyristor and a processing delay are considered by using a zero-order hold. The performance of the proposed start-up method is evaluated in Matlab/Psim at standstill and at low speed. To verify the feasibility of the method, a 5kVA LCI system prototype is implemented, and the proposed initial angle detector and the system performance are confirmed by experimental results from standstill to 900rpm.

Analysis of fluctuations in ex-core neutron detector signal in Krško NPP during an earthquake

  • Tanja Goricanec;Andrej Kavcic;Marjan Kromar;Luka Snoj
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.575-600
    • /
    • 2024
  • During an earthquake on December 29th 2020, the Krško NPP automatically shutdown due to the trigger of the negative neutron flux rate signal on the power range nuclear instrumentation. From the time course of the detector signal, it can be concluded that the fluctuation in the detector signal may have been caused by the mechanical movement of the ex-core neutron detectors or the pressure vessel components rather than the actual change in reactor power. The objective of the analysis was to evaluate the sensitivity of the neutron flux at the ex-core detector position, if the detector is moved in the radial or axial direction. In addition, the effect of the core barrel movement and core inside the baffle movement in the radial direction were analysed. The analysis is complemented by the calculation of the thermal and total neutron flux gradient in radial, axial and azimuthal directions. The Monte Carlo particle transport code MCNP was used to study the changes in the response of the ex-core detector for the above-mentioned scenarios. Power and intermediate-range detectors were analysed separately, because they are designed differently, positioned at different locations, and have different response characteristics. It was found that the movement of the power range ex-core detector has a negligible effect on the value of the thermal neutron flux in the active part of the detector. However, the radial movement of the intermediate-range detector by 5 cm results in 7%-8% change in the thermal neutron flux in the active part of the intermediate-range detector. The analysis continued with an evaluation of the effects of moving the entire core barrel on the ex-core detector response. It was estimated that the 2 mm core barrel radial oscillation results in ~4% deviation in the power and intermediate-range detector signal. The movement of the reactor core inside baffle can contribute ~6% deviation in the ex-core neutron detector signal. The analysis showed that the mechanical movement of ex-core neutron detectors cannot explain the fluctuations in the ex-core detector signal. However, combined core barrel and reactor core inside baffle oscillations could be a probable reason for the observed fluctuations in the ex-core detector signal during an earthquake.

ANALYSIS OF CHARGE COLLECTION EFFICIENCY FOR A PLANAR CdZnTe DETECTOR

  • Kim, Kyung-O;Kim, Jong-Kyung;Ha, Jang-Ho;Kim, Soon-Young
    • Nuclear Engineering and Technology
    • /
    • v.41 no.5
    • /
    • pp.723-728
    • /
    • 2009
  • The response property of the CZT detector ($5{\times}5{\times}5\;mm^3$), widely used in photon spectroscopy, was evaluated by considering the charge collection efficiency, which depends on the interaction position of incident radiation, A quantitative analysis of the energy spectra obtained from the CZT detector was also performed to investigate the tail effect at the low energy side of the full energy peak. The collection efficiency of electrons and holes to the two electrodes (i.e., cathode and anode) was calculated from the Hecht equation, and radiation transport analysis was performed by two Monte Carlo codes, Geant4 and MCNPX. The radiation source was assumed to be 59.5 keV gamma rays emitted from a $^{241}Am$ source into the cathode surface of this detector, and the detector was assumed to be biased to 500 V between the two electrodes. Through the comparison of the results between the Geant4 calculation considering the charge collection efficiency and the ideal case from MCNPX, an pronounced difference of 4 keV was found in the full energy peak position. The tail effect at the low energy side of the full energy peak was confirmed to be caused by the collection efficiency of electrons and holes. In more detail, it was shown that the tail height caused by the charge collection efficiency went up to 1000 times the pulse height in the same energy bin at the calculation without considering the charge collection efficiency. It is, therefore, apparent that research considering the charge collection efficiency is necessary in order to properly analyze the characteristics of CZT detectors.

Efficiency calibration and coincidence summing correction for a NaI(Tl) spherical detector

  • Noureddine, Salam F.;Abbas, Mahmoud I.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3421-3430
    • /
    • 2021
  • Spherical NaI(Tl) detectors are used in gamma-ray spectrometry, where the gamma emissions come from the nuclei with energies in the range from a few keV up to 10 MeV. A spherical detector is aimed to give a good response to photons, which depends on their direction of travel concerning the detector center. Some distortions in the response of a gamma-ray detector with a different geometry can occur because of the non-uniform position of the source from the detector surface. The present work describes the calibration of a NaI(Tl) spherical detector using both an experimental technique and a numerical simulation method (NSM). The NSM is based on an efficiency transfer method (ETM, calculating the effective solid angle, the total efficiency, and the full-energy peak efficiency). Besides, there is a high probability for a source-to-detector distance less than 15 cm to have pulse coincidence summing (CS), which may occur when two successive photons of different energies from the same source are detected within a very short response time. Therefore, γ-γ ray CS factors are calculated numerically for a 152Eu radioactive cylindrical source. The CS factors obtained are applied to correct the measured efficiency values for the radioactive volumetric source at different energies. The results show a good agreement between the NSM and the experimental values (after correction with the CS factors).

Development of a muon detector based on a plastic scintillator and WLS fibers to be used for muon tomography system

  • Chanwoo Park;Kyu Bom Kim;Min Kyu Baek;In-soo Kang;Seongyeon Lee;Yoon Soo Chung;Heejun Chung;Yong Hyun Chung
    • Nuclear Engineering and Technology
    • /
    • v.55 no.3
    • /
    • pp.1009-1014
    • /
    • 2023
  • Muon tomography is a useful method for monitoring special nuclear materials (SNMs) such as spent nuclear fuel inside dry cask storage. Multiple Coulomb scattering of muons can be used to provide information about the 3-dimensional structure and atomic number(Z) of the inner materials. Tomography using muons is less affected by the shielding material and less harmful to health than other measurement methods. We developed a muon detector for muon tomography, which consists of a plastic scintillator, 64 long wavelength-shifting (WLS) fibers attached to the top of the plastic scintillator, and silicon photomultipliers (SiPMs) connected to both ends of each WLS fiber. The muon detector can acquire X and Y positions simultaneously using a position determination algorithm. The design parameters of the muon detector were optimized using DETECT2000 and Geant4 simulations, and a muon detector prototype was built based on the results. Spatial resolution measurement was performed using simulations and experiments to evaluate the feasibility of the muon detector. The experimental results were in good agreement with the simulation results. The muon detector has been confirmed for use in a muon tomography system.