• Title/Summary/Keyword: position data

Search Result 5,491, Processing Time 0.034 seconds

DS-SS/TDMA Preamble Structure and Code Acquisition Method for Enhanced Code Acquisition Performance (부호획득 성능이 향상된 DS-SS/TDMA 프리앰블 구조 및 부호획득방법)

  • Ryu, Young-Jae;Jang, Jeen-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11B
    • /
    • pp.1725-1731
    • /
    • 2010
  • In this paper, we proposed preamble structure and code acquisition method to improve code acquisition performance for DS-SS/TDMA packet communication systems. Proposed algorithm changes the short PN code position depending on the sub slot number. Proposed algorithm also saves position differences between short PN codes and position offsets between short PN codes and data starting position of the TDMA packet. By using the position difference table, proposed algorithm can find out exact data starting position even though some sub slots were defected. As a result of simulation, we concluded that proposed algorithm has at least 5dB gain compared to conventional method when same short PN code is used. Moreover, proposed algorithm shows same code acquisition performance only with 1/4 shortened short PN code compared to conventional method.

Comparison of theoretical and machine learning models to estimate gamma ray source positions using plastic scintillating optical fiber detector

  • Kim, Jinhong;Kim, Seunghyeon;Song, Siwon;Park, Jae Hyung;Kim, Jin Ho;Lim, Taeseob;Pyeon, Cheol Ho;Lee, Bongsoo
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3431-3437
    • /
    • 2021
  • In this study, one-dimensional gamma ray source positions are estimated using a plastic scintillating optical fiber, two photon counters and via data processing with a machine learning algorithm. A nonlinear regression algorithm is used to construct a machine learning model for the position estimation of radioactive sources. The position estimation results of radioactive sources using machine learning are compared with the theoretical position estimation results based on the same measured data. Various tests at the source positions are conducted to determine the improvement in the accuracy of source position estimation. In addition, an evaluation is performed to compare the change in accuracy when varying the number of training datasets. The proposed one-dimensional gamma ray source position estimation system with plastic scintillating fiber using machine learning algorithm can be used as radioactive leakage scanners at disposal sites.

ALGORITHM DEVELOPMENT FOR POSITION CORRECTIONS OF FIMS DATA (FIMS 관측 자료의 위치보정 알고리즘 개발)

  • Lim, Y.M.;Seon, K.I.;Min, K.;Ryu, K.S.;Park, J.W.;Kim, I.J.;Shinn, J.H.;Lee, D.H.
    • Publications of The Korean Astronomical Society
    • /
    • v.20 no.1 s.24
    • /
    • pp.135-141
    • /
    • 2005
  • The FIMS(Far-ultraviolet IMaging Spectrograph), the main payload onboard the first Korean Science Technology SATellite, STSAT-1, has performed various astronomical observations, including the Cygnus Loop, Vela supernova remnants, LMC(Large Magellanic Cloud), since its launch on September 2003. It has been found that the attitude information provided by spacecraft bus system has the errors of more than about 10-15 arcmins due to the time offset problem and errors in attitude knowledge. We develop an algorithm for correction of position errors in FIMS data. The aspect for the FIMS data is determined by comparing the positions of observed bright stars with the Tycho-II and TD-1 catalogs. The position errors of the bright stars along the scanning (${\gamma}$) and spatial (${\delta}$) directions were considered as functions of ${\delta}$, ignoring errors in position angle. The corrected positions of the bright stars coincided very well to their Tycho-II and TD-I positions. The correction algorithm is essential for the FIMS data analysis, and is being used for the FIMS data analysis.

A Study on the Social Position and Status of the Dress Symbolism Described in the Traditional Korean Folktale (전통설화에 나타난 복식의 사회적 지위 및 신분 상징에 관한 연구)

  • 김애련;김진구
    • The Research Journal of the Costume Culture
    • /
    • v.10 no.4
    • /
    • pp.419-432
    • /
    • 2002
  • This research analyzes how our people use the social position and status symbolism of the dress in focus of the Chosun Dynasty Period by analysis data of traditional folktale. This research material was analyzed social position and status symbolism of the dress with basis on Korean Oral Literature grand volumes of 82 published by The Academy of Korean Studies and whole volumes of 7 of Korean Literature Traditional , Folktale written by Kimhyunrwong. The methods of study is that first, selected part of describing social position and status of dress from the traditional Korean folktale. Second, summmarized things classified such as clothes, shape of hair and belt. Third, analyzed social position and status of dress with basis on symbol theory to be pre-studied. As a result, 1 can get the next conclusion. First, in case of the dress symbolism of social position and status, we classify as class. occupation, surreal person. Second, the changes of the social position and status showed upward position or downward position, and occupation change. Third, symbolization of position disguise was classified disguise of social position, sex, occupation.

  • PDF

Difference of Vital Capacity According to Cranio-Vertebral Angle and Posture Change of Forward Head Posture People (두부전방전위자세에서 두개척추각과 자세변화에 따른 폐활량의 차이)

  • Kim, Ji-Yeon;Park, Eun-Ji;Yu, Ji-Min;Lee, Myoung-Hee
    • Journal of Korean Physical Therapy Science
    • /
    • v.25 no.1
    • /
    • pp.44-51
    • /
    • 2018
  • Background: In this paper, the relationship between the Cranio-Vertebral Angle (CVA) and the vital capacity in each position is reviewed, and the vital capacity in the position is studied. Methods: This study targeted 20 non-smoking female students of U university, which is located in Gyeongju-si. To review the Forward Head Posture (FHP) of each subject, CVA was measured, and FVC, FEV1, and FEF (25-75%) were measured and analyzed using a spirometer. Subjects were ordered to exhale three times with ease and then inhale up to their total lung capacity. After then, they were requested to exhale longer than six seconds. Then the inspiration and expiration were repeated. The measurement was executed in three positions, including supine, prone, and sitting. In each position the measurement was repeated twice, and a one-minute break was given between each cycle, so it was measured six times in total. SPSS 14.0 for Windows was used to analyze the data. The subjects' general properties were analyzed using descriptive statistics, and the correlation between the angle and the respiration variable result in each position was analyzed. The result of the respiration variable in each position was analyzed using the one-way ANOVA, and then a Scheffe post-hoc comparison was executed. Results: According to the analysis result of the correlation between the angle and respiration variable in each position, the sitting position and FEF (25-75%) showed a positive correlation (P<0.05). The respiration variable in each position showed a significant difference in FVC (p<0.05), and the Scheffe post-hoc comparison differed in prone and sitting positions. Conclusion: To increase the FVC of FHP patients, different exercises for each position can be applied, and the result of this study can be utilized as background data for further research.

An In-situ Correction Method of Position Error for an Autonomous Underwater Vehicle Surveying the Sea Floor

  • Lee, Pan-Mook;Jun, Bong-Huan;Park, Jin-Yeong;Shim, Hyung-Won;Kim, Jae-Soo;Jung, Hun-Sang;Yoon, Ji-Young
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.60-67
    • /
    • 2011
  • This paper presents an in-situ correction method to compensate for the position error of an autonomous underwater vehicle (AUV) near the sea floor. AUVs generally have an inertial navigation system assisted with auxiliary navigational sensors. Since the inertial navigation system shows drift in position without the bottom reflection of a Doppler velocity log, external acoustic positioning systems, such as an ultra short baseline (USBL), are needed to set the position without surfacing the AUV. The main concept of the correction method is as follows: when the AUV arrives near the sea floor, the vehicle moves around horizontally in a circular mode, while the USBL transceiver installed on a surface vessel measures the AUV's position. After acquiring one data set, a least-square curve fitting method is adopted to find the center of the AUV's circular motion, which is transferred to the AUV via an acoustic telemetry modem (ATM). The proposed method is robust for the outlier of USBL, and it is independent of the time delay for the data transfer of the USBL position with the ATM. The proposed method also reduces the intrinsic position error of the USBL, and is applicable to the in-situ calibration as well as the initialization of the AUVs' position. Monte Carlo simulation was conducted to verify the effectiveness of the method.

Real time GPS position correction using a camera and the vanishing point when a vehicle runs (카메라와 무한원점을 이용한 주행중 실시간 GPS 위치 보정)

  • Kim, Bo-Sung;Jeong, Jun-Ik;Rho, Do-Whan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.508-510
    • /
    • 2004
  • In this paper, we proposed the GPS position data correction method for autonomous land navigation using vanishing point property and a monocular vision system. Simulations are carried out over driving distances of approximately 60 km on the basis of realistic road data. In straight road, the proposed method reduces GPS position error to minimum more than 63% and positioning errors within less than 0.5m are observed. However, the average accuracy of the method is not presented. because it is difficult to estimate it in curve road or other road environments.

  • PDF

A Study on Development of GPS Simulation Tool Kit (GPS Simulation System 개발에 관한 연구)

  • 양원재;전승환
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.10b
    • /
    • pp.65-73
    • /
    • 1998
  • Ship's positino data obtaining method is ine of the very important factor innavigation . Nowadays, GPS(Global Positioning System) using the earth orbiting satellites are equipped and operated for the position finding. Because it provides more precise position information than other equipments and is very convenient for navigator. In this study, it is designed to develop the GPS simulator for everybody being able to proactise the GPS operating skill like as navigation planning, navigation calculating etc. And also, it can be operated with personal computer without real GPS receiver. This simulation system is based on the real GPS receiver system and built by the visual basic 5.0 program. And it displays the ship's position and navigating information and plots the ship's moving track on the screen in real time according as initial setup data-main engine's rpm, rudder angle, depature position and waypoint.

  • PDF

Measurement of position based on correlative function in self-movement

  • Amano, Naoki;Hashimoto, Hiroshi;Higashiguchi, Minoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.601-604
    • /
    • 1994
  • This paper describes an effective method to estimate a position of an automous vehicle equipped with a single CCD-camera along indoor passageways. Using the sequential image data from the self-movement of the vehicle, the position is estimated by integrating the approximated motion parameters. The detection of the yaw angle that is one of the motion parameter is difficult in general, e.g. slip or error for noise, therefore the different detection is presented, which is, without shaft encoders, based on a projection function for 2D-image data and a cross-correlation function so as to be robust for noise. The approximated geometric function to estimate the position is used to reduce the computational effort. To verify the effectiveness of the method, the analysis and the computational results are shown through the simulations. Furthermore, the experimental results by using the test vehicle for the real indoor passageway are shown.

  • PDF

A Study of Tunnel Position Interpretation using Seismic Travel Time and Amplitude Data Simulation (탄성파 주시 및 진폭 자료의 Simulation에 의한 터널 위치 추적에 관한 연구)

  • Suh, Baek-Soo;Sohn, Kwon-Ik
    • Journal of the Korean earth science society
    • /
    • v.28 no.1
    • /
    • pp.105-111
    • /
    • 2007
  • Seismic and georadar prospecting methods have been used to detect deep seated small tunnel in Korea. The tunnel position interpretation of seismic method has been performed mainly by wave travel time and amplitude. But it was very unstable to interpret the exact tunnel position because of short interval of two measuring boreholes and picking mistake of first arrivals. To solve this problem, this study applied travel-time and amplitude data simulation methods to detect tunnel position.