• Title/Summary/Keyword: position control system

Search Result 3,682, Processing Time 0.028 seconds

Position and Force Simultaneous Trajectory Tracking Control with a Pneumatic Cylinder Driving System (공기압 실린더를 이용한 힘과 위치 동시 궤적 추적 제어)

  • Cho, M.S.;Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.7 no.3
    • /
    • pp.40-47
    • /
    • 2003
  • In this study, position and force simultaneous trajectory tracking control apparatus with pneumatic cylinder driving system is proposed. The pneumatic cylinder driving system that consists of two pneumatic cylinders constrained in series and two proportional flow control valves offers a considerable advantage as to non-interaction of the actuators because of the low stiffness of the pneumatic actuators. The controller applied to the driving system is composed of a non-interaction controller to compensate for interaction of two cylinders and a disturbance observer to reduce the effect of model discrepancy of the driving system in the low frequency range that cannot be suppressed by the non-interaction controller. The experimental results with the proposed control apparatus show that the interacting effects of two cylinders are eliminated remarkably and the proposed control apparatus tracks the given position and force trajectory accurately.

  • PDF

Position Control of ER Valve-Cylinder System Via Neural Control Technique (신경 제어 기법을 이용한 ER 밸브-실린더 시스템의 위치 제어)

  • 정재민;최승복;정재천
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.52-64
    • /
    • 1996
  • This paper presents an active position control of a single-rod cylinder system featuring an electrorheological(ER) fluid-based valve. The ER fluid consisting of silicone oil and chemically treated particles is firstly composed and its Bingham property is tested as a function of imposed electric field. A multi-channel plate type of ER valve is then designed and manufactured on the basis of the field-dependent Bingham model. Performance test of the ER valve is undertaken by evaluating pressure drop with respect to the number of electrode as well as the intensity of the electric field. Subsequently, the ER valve-cylinder system is constructed and its governing equation of motion is derived. A neural control scheme for position control of the cylinder is formulated by incorporating proportional-plus-derivative(PD) controller and implemented. Experimental results of both regulating and tracking control responses are presented in order to demonstrate the efficacy of the proposed ER valve-cylinder control system.

  • PDF

Position Control of a 3 dof Closed -loop Cylinder System Using ER Valve Actuators

  • Park, Seug-Bok;Cho, Myung-Soo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.2 no.2
    • /
    • pp.48-56
    • /
    • 2001
  • This paper presents the position tracking control of a closed-loop cylinder system using electro-rheological (ER) valve actuators. After manufacturing three sets of cylindrical ER valves on the basis of Bingham model of ER fluid, a 3 dof(degree-freedom) closed-loop cylinder system having the heave, roll and pitch motions is constructed. The governing equations of motion are derived using Lagrange's equation and a control model is formulated by considering nonlinear characteristics of the system, Sliding mode controllers are the designed for these ER valve actuators in order to achieve position tracking control. The effectiveness of trajectory tracking control performance of the proposed cylinder system is demonstrated through computer simulation and experimental implementation of the sliding mode controller.

  • PDF

Design of a Simultaneous Control System of Position and Force with a Pneumatic Cylinder Driving Apparatus (공기압 실린더 구동 장치를 이용한 힘과 위치 동시 제어계 설계)

  • Jang, Ji-Seong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1614-1619
    • /
    • 2003
  • In this study, position and force simultaneous trajectory tracking control system with pneumatic cylinder driving apparatus is proposed. The pneumatic cylinder driving apparatus that consists of two pneumatic cylinders constrained in series and two proportional flow control valves offers a considerable advantage as to non-interaction of the actuators because of the low stiffness of the pneumatic cylinders. The controller applied to the driving system is composed of a non-interaction controller to compensate for interaction of two cylinders and a disturbance observer to reduce the effect of model discrepancy of the driving system in the low frequency range that cannot be suppressed by the non-interaction controller. The experimental results with the proposed control system show that the interacting effects of two cylinders are eliminated remarkably and the proposed control system tracks the given position and force trajectories accurately.

  • PDF

Hybrid Control of Position/Tension for a Stringing Troy Wire (가설 트롤리선의 위치 / 장력 혼합제어)

  • Hong, Jeng-Pyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.932-938
    • /
    • 2009
  • As a stringing troy wire is installed by manual operation, it is necessary to scheme the automatic system for stringing troy wire. To accomplish a task of this kind, in this paper an approach to designing controllers for the hybrid Position/Tension control of a stringing troy wire is presented. Position control system is designed based on equation of dc motor and motion equation of robot, it is controlled by feedback with a detected speed dc motor. Tension control system is designed based on equation of ac servomotor for generating torque and dynamic equation of a troy wire, it is controled by feedback with a detected tension. The control parameters is determined by simulation in independence operation of each system. To suppress a mutual interference that the disturbance occur in operating of two task at same time. Dynamic hybrid control is proposed by feed forward compensator with a disturbance accelerator and a step torque at start. The operation of proposed system is simulated and experimented, results is verified the utilities.

A High-Performance Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 리럭턴스 동기전동기의 고성능 제어시스템)

  • Kim, Min-Huei;Kim, Nam-Hun;Kim, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.47-52
    • /
    • 2001
  • This paper presents a high-performance control system for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The system consist of stator flux observer, rotor position/speed estimator, torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and F240/C31DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by the observed stator flux-linkage space vector. The estimated rotor speed can be determinated by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. To prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed digitally high-performance position sensorless control system are shown a good motion control response characteristic results and high performance features using 1.0Kw RSM.

  • PDF

Development of Automatic Coil-Handling Crane Control System (크레인 무인 자동 운전 시스템 개발)

  • Choi Chintae;Shin K.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.08a
    • /
    • pp.126-133
    • /
    • 2004
  • Lots of researches and applications on the automated overhead cranes in shops have been done for some decades, but a few successful results are reported. Integrated crane control systems designed by famous engineering companies are still expensive and are not satisfactory in view of maintenance and reliability. A more reasonable control system fit to requirements of manufacturing industries is suggested in the study. The new deigned system has superior capabilities for anti-sway of rope and position control. The controller for automated operations is composed of a Linux-based PC for non real-time control and a high-speed PLC for hard real-time control. Some algorithms required for coil yard operations as well as main control algorithms such as reference position generation, position control and anti-sway control have been designed and fully tested on the new crane simulator. The designed crane control system showed satisfactory performance on position control accuracy and anti-sway of rope. The maximum positional error is 8mm and the maximum sway error is 0.1 degrees. The suggested control strategies have been successfully applied to the 10-1 crane in No. 4 CGL of in the Kwangyang Steel Works and in commercial operation.

  • PDF

Position Control of Linear Induction Motor with Cage-type Secondary Using Direct Thrust Control (DTC를 이용한 농형 선형유도전동기의 위치 제어)

  • Kim, Kyung-Min;Park, Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2004.10a
    • /
    • pp.9-11
    • /
    • 2004
  • This paper presents a position control system for a linear induction motor(LIM) with cage-type secondary using direct thrust control(DTC). The position controller, that combines the merits of integral-proportional(IP) speed control, is designed for the LIM. The actual position of the LIM is defected by the linear scale the resolution of 100. Thrust correction coefficient due to the end effect of the LIM is utilized in estimating actual thrust. As a result, responses of the position, speed, thrust, and flux are shown.

  • PDF

Design of the Crane position control System using GPS and USN (GPS와 USN을 이용한 크레인 위치제어 시스템 설계)

  • Lim, Su-Il;Nam, Si-Byung;Lim, Hae-Jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1520-1525
    • /
    • 2009
  • In this paper, we study and simulate the suggested position control system using GPS and USN to replace the existing control system of a crane. For the correct approach, the position control system of a crane is divided into the control system of the ground station and the mobile station The hardware is comprised of GPS receiving module to receive the position control data of a crane from GPS satellites, bluetooth communication module for the data communication between the ground station and the mobile station, supersonic sensor module for a precise position control of a crane, motor to replace a crane roller, embedded MCU(ATmega128L) and so on. In here, an embedded MCU controls GPS receiving module, bluetooth communication module and supersonic sensor module. The Software is comprised of three programs. Three programs are the program to filter GGA output part in a receiving data of GPS receiving module, the driving program for supersonic sensor module, the digital map program to monitor a crane location. From the simulation results, it is demonstrated that the proposed system has the capability of crane position control with 1cm precision.

A Method of a Nonlinear Position Control of a Pneumatic Cylinder (비선형특성 보상에 의한 공기압 실린더의 위치제어)

  • Jang, J.S.
    • Journal of Power System Engineering
    • /
    • v.4 no.2
    • /
    • pp.58-64
    • /
    • 2000
  • A method for the position control of a pneumatic cylinder using a linearized controller is proposed. Pneumatic cylinder has highly nonlinear characteristics and modelling of the system has been difficult. Compliance of the pneumatic cylinder is materially changed according to the operating position. So, in the case that fixed gain controller obtained by a linearized model at a specified position is used, response of the cylinder should be changed according to the operating position. In order to get a designed results regardless of operating positions, a controller for compensation of the nonlinear characteristic with a linearlization compensator is designed and simulation results show that this method is appropriate for the control object.

  • PDF