• 제목/요약/키워드: position control system

Search Result 3,682, Processing Time 0.034 seconds

Multiple Camera-Based Correspondence of Ground Foot for Human Motion Tracking (사람의 움직임 추적을 위한 다중 카메라 기반의 지면 위 발의 대응)

  • Seo, Dong-Wook;Chae, Hyun-Uk;Jo, Kang-Hyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.848-855
    • /
    • 2008
  • In this paper, we describe correspondence among multiple images taken by multiple cameras. The correspondence among multiple views is an interesting problem which often appears in the application like visual surveillance or gesture recognition system. We use the principal axis and the ground plane homography to estimate foot of human. The principal axis belongs to the subtracted silhouette-based region of human using subtraction of the predetermined multiple background models with current image which includes moving person. For the calculation of the ground plane homography, we use landmarks on the ground plane in 3D space. Thus the ground plane homography means the relation of two common points in different views. In the normal human being, the foot of human has an exactly same position in the 3D space and we represent it to the intersection in this paper. The intersection occurs when the principal axis in an image crosses to the transformed ground plane from other image. However the positions of the intersection are different depend on camera views. Therefore we construct the correspondence that means the relationship between the intersection in current image and the transformed intersection from other image by homography. Those correspondences should confirm within a short distance measuring in the top viewed plane. Thus, we track a person by these corresponding points on the ground plane. Experimental result shows the accuracy of the proposed algorithm has almost 90% of detecting person for tracking based on correspondence of intersections.

A Novel Carrier-to-noise Power Ratio Estimation Scheme with Low Complexity for GNSS Receivers (GNSS 수신기를 위한 낮은 복잡도를 갖는 새로운 반송파 대 잡음 전력비 추정기법)

  • Yoo, Seungsoo;Baek, Jeehyeon;Yeom, Dong-Jin;Jee, Gyu-In;Kim, Sun Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.767-773
    • /
    • 2014
  • The carrier-to-noise power ratio is a key parameter for determining the reliability of PVT (Position, Velocity, and Time) solutions which are obtained by a GNSS (Global Navigation Satellite System) receiver. It is also used for locking a tracking loop, deciding the re-acquisition process, and processing advanced navigation in the receiver subsystem. The representative carrier-to-noise power ratio estimation schemes are the narrowband-wideband power ratio method (NW), the MM (Moment Method), and Beaulieu's method (BL). The NW scheme is the most classical one for commercial GNSS receivers. It is often used as an authoritative benchmark for assessing carrier-to-noise power estimation schemes. The MM scheme is the least biased solution among them, and the BL scheme is a simpler scheme than the MM scheme. This paper focuses on the less biased estimation with low complexity when the residual phase noise remains, then proposes a novel carrier-to-noise power ratio estimation scheme with low complexity for GNSS receivers. The asymptotic bias of the proposed scheme is derived and compared with others, and the simulation results demonstrate that the complexity of the proposed scheme is lowest among them, while the estimation performance of the proposed scheme is similar to those of the BL and MM schemes in normal and high gained reception environments.

Analysis of Polishing Mechanism and Characteristics of Aspherical Lens with MR Polishing (MR Polishing을 이용한 비구면 렌즈의 연마 메커니즘 및 연마 특성 분석)

  • Lee, Jung-Won;Cho, Myeong-Woo;Ha, Seok-Jae;Hong, Kwang-Pyo;Cho, Yong-Kyu;Lee, In-Cheol;Kim, Byung-Min
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.3
    • /
    • pp.36-42
    • /
    • 2015
  • The aspherical lens was designed to be able to array a focal point. For this reason, it has very curved surface. The aspherical lens is fabricated by injection molding or diamond turning machine. With the aspherical lens, tool marks and surface roughness affect the optical characteristics, such as transmissivity. However, it is difficult to polish free form surface shapes uniformly with conventional methods. Therefore, in this paper, the ultra-precision polishing method with MR fluid was used to polish an aspherical lens with 4-axis position control systems. A Tool path and polishing mechanism were developed to polish the aspherical lens shape. An MR polishing experiment was performed using a generated tool path with a PMMA aspherical lens after the turning process. As a result, surface roughness was improved from $R_a=40.99nm$, $R_{max}=357.1nm$ to $R_a=4.54nm$, $R_{max}=35.72nm$. Finally, the MR polishing system can be applied to the finishing process of fabrication of the aspherical lens.

Head Mouse System Based on A Gyro and Opto Sensors (각속도 및 광센서를 이용한 헤드 마우스)

  • Park, Min-Je;Yoo, Jae-Ha;Kim, Soo-Chan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.70-76
    • /
    • 2009
  • We proposed the device to control a computer mouse with only head movements and eye blinks so that disabilities by car or other accidents can use a computer. The mouse position were estimated from a gyro-sensor which can measure head movements, and the mouse events such as click/double click were from opto sensors which can detect the eyes flicker, respectively. The sensor was mounted on the goggle in order not to disturb the visual field. There was no difference in movement speed between ours and a general mouse, but it required 3$\sim$4 more times in the result of the experiment to evaluate spatial movements and events detection of the proposed mouse because of the low accuracy. We could eliminate cumbersome work to periodically remove the accumulated error and intuitively control the mouse using non-linear relative point method with dead zones. Optical sensors are used in the event detection circuitry designed to remove the influence of the ambient light changes, therefore it was not affected in the change of external light source.

A Study on Smart Monitoring and Automatic Control based Food Waste Disposer (스마트 모니터링과 자동 제어 기반의 음식물 처리장치 연구)

  • Ahn, Yoon-Ae;Byun, Sang-Hun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.10
    • /
    • pp.29-35
    • /
    • 2018
  • A food waste disposer commonly used in restaurants or homes is a type of machine with an agitator attached. The food waste disposer of the crushing type has a problem that the agitator may be broken if the piping or decomposition filter is blocked. In addition, there is an inconvenience that the user must manually open the cover to check the level in the food waste disposer. To solve these problems, this paper proposes a device that combines basic IoT technology with food waste disposer. The proposed device additionally designs and implement a real-time monitor processor and an automatic control processor inside the existing food waste disposer. The proposed food waste disposer allows the user to monitor the inside of the device using the smartphone. In addition, when the food is filled up to a certain position in the food waste disposer, it automatically stops and alarms. Using the proposed system, the user can conveniently check the inside of the food waste disposer, which has the advantage of preventing malfunctions in advance and reducing the probability of malfunction.

A Study on Aircraft Sensitivity Analysis for C.G Variation of Longitudinal Axis (항공기 세로축 무게중심의 변화에 따른 민감도 해석에 관한 연구)

  • 김종섭
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.6
    • /
    • pp.83-91
    • /
    • 2006
  • An advanced method of Relaxed Static Stability (RSS) is utilized for improving the aerodynamic performance of modern version supersonic jet fighter aircraft. The flight control system utilizes RSS criteria in longitudinal axis to achieve performance enhancements and improve stability. The flight control law of T-50 advanced trainer employs RSS concept in order to improve the aerodynamic performance and guarantee aircraft stability. The longitudinal center of gravity(X-c.g) varies as a function of external stores, fuel state and gear position. Shifts in X-c.g relate directly to longitudinal static margin in aircraft stability. This paper deals the maximum aft X-c.g for critical aircraft loadings and checks static margin limits using sensitivity such as damping, natural frequency, gain and phase margin. And nonlinear analysis was conducted for such as short period input. And also, this paper shows the T-50 aircraft stability based on the result of high angle of attack flight such as upright and inverted departure.

Fabrication and characteristics of electrostatic micro mirror for optical disk drives (광 저장장치 응용을 위한 마이크로 미러의 제작과 그 특성)

  • Kim, Jong-Wan;Seo, Hwa-Il;Lee, Woo-Young;Rim, Kyung-Hwa;Jang, Young-Jo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2002
  • Optical disk drives read information by replacing a laser beam on the disk track. As information has become larger, the more accurate position control of a laser beam is necessary. In this paper, we report the analysis and fabrication of the micro mirror for optical disk drivers. The mirror was fabricated by using MEMS technology. Especially, the Process using the lapping and polishing step after the bonding of the mirror and electrode plates was employed for the process reliability. The mirror size was $2.5mm{\times}3mm$ and it needed about 35V for displacement of $3.2{\mu}m$.

Enhanced Attitude Determination with IMU using Estimation of Lever Arms (레버암 상태 추정을 이용한 IMU 의 자세 결정 알고리즘)

  • Fang, Tae Hyun;Oh, Jaeyong;Park, Sekil;Park, Byoun-Jae;Cho, Deuk-Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.941-946
    • /
    • 2013
  • In this paper, an enhanced method for attitude determination is proposed for systems using an IMU (Inertial Measurement Unit). In attitude determination with IMU, it is generally assumed that the IMU can be located in the center of gravity on the vehicle. If the IMU is not located in the center of gravity, the accelerometers of the IMU are disturbed from additive accelerations such as centripetal acceleration and tangential acceleration. Additive accelerations are derived from the lever arm which is the distance between the center of gravity and the position of the IMU. The performance of estimation errors can be maintained in system with a non-zero lever arm, if the lever arm is estimated to remove the additive accelerations from the accelerometer's measurements. In this paper, an estimation using Kalman filter is proposed to include the lever arm in the state variables of the state space equation. For the Kalman filter, the process model and the measurement model for attitude determination are made up by using quaternion. In order to evaluate the proposed algorithm, both of the simulations and the experiments are performed for the simplified scenario of motion.

The Effects of Sa-am Acupuncture on Radial Pulse in Healthy Human Subjects: A Comparative Study of Liver Tonifying and Sedating (간정격 및 간승격 자침이 정상 성인의 맥파에 미치는 영향 비교 연구)

  • Yuk, Dong Il;Jeon, Ju Hyun;Kim, Young Il;Kim, Jung Ho
    • Journal of Acupuncture Research
    • /
    • v.32 no.2
    • /
    • pp.169-185
    • /
    • 2015
  • Objectives : The purpose of this study is to find the effects of Sa-am liver tonifying and sedating acupuncture on radial pulse. Methods : Sixty healthy people were divided into a liver tonifying acupuncture(LTA) group, liver sedating acupuncture(LSA) group, and control group. The LTA group and LSA group received acupuncture for 20 minutes with a supine position. The Control group took a rest without receiving acupuncture. Radial pulse was measured by three dimensional pulse imaging system(DMP-3000) at four different time points (before, right after, 30 minutes after, and 60 minutes after acupuncture). We compared the three groups and figure out determined the parameters which significantly changed after acupuncture treatment. Results : 1. Pulse period, T1/T, T4/T, (T-T4)/T, T4/(T-T4), T5/T significantly changed after acupuncture. 2. H4, pulse area, systolic pulse area, diastolic pulse area, radial augmentation index(RAI), and pulse power volume / min significantly changed after acupuncture. 3. Frequency of Fourier components, ratio of frequencies of Fourier components, magnitude of Fourier components, and ratio of magnitudes of Fourier components significantly changed after acupuncture. Conclusions : LTA and LSA have an effect on the radial pulse parameters. Further studies on radial pulse change using Sa-Am acupuncture are needed.

A Fusion Algorithm of Pure Pursuit and Velocity Planning to Improve the Path Following Performance of Differential Driven Robots in Unstructured Environments (차동 구동형 로봇의 비정형 환경 주행 경로 추종 성능 향상을 위한 Pure pursuit와 속도 계획의 융합 알고리즘)

  • Bongsang Kim;Kyuho Lee;Seungbeom Baek;Seonghee Lee;Heechang Moon
    • The Journal of Korea Robotics Society
    • /
    • v.18 no.3
    • /
    • pp.251-259
    • /
    • 2023
  • In the path traveling of differential-drive robots, the steering controller plays an important role in determining the path-following performance. When a robot with a pure-pursuit algorithm is used to continuously drive a right-angled driving path in an unstructured environment without turning in place, the robot cannot accurately follow the right-angled path and stops driving due to the ground and motor load caused by turning. In the case of pure-pursuit, only the current robot position and the steering angle to the current target path point are generated, and the steering component does not reflect the speed plan, which requires improvement for precise path following. In this study, we propose a driving algorithm for differentially driven robots that enables precise path following by planning the driving speed using the radius of curvature and fusing the planned speed with the steering angle of the existing pure-pursuit controller, similar to the Model Predict Control control that reflects speed planning. When speed planning is applied, the robot slows down before entering a right-angle path and returns to the input speed when leaving the right-angle path. The pure-pursuit controller then fuses the steering angle calculated at each path point with the accelerated and decelerated velocity to achieve more precise following of the orthogonal path.