Head Mouse System Based on A Gyro and Opto Sensors

각속도 및 광센서를 이용한 헤드 마우스

  • Park, Min-Je (Graduate school of Bio & Information Technology, hankyung National University) ;
  • Yoo, Jae-Ha (Hankyong National University of Electronics Engineering) ;
  • Kim, Soo-Chan (Graduate school of Bio & Information Technology, hankyung National University)
  • 박민제 (한경대학교 생물환경.정보통신전문대학원) ;
  • 유재하 (한경대학교 전자공학과, 전자기술종합연구소) ;
  • 김수찬 (한경대학교 생물환경.정보통신전문대학원)
  • Published : 2009.07.25

Abstract

We proposed the device to control a computer mouse with only head movements and eye blinks so that disabilities by car or other accidents can use a computer. The mouse position were estimated from a gyro-sensor which can measure head movements, and the mouse events such as click/double click were from opto sensors which can detect the eyes flicker, respectively. The sensor was mounted on the goggle in order not to disturb the visual field. There was no difference in movement speed between ours and a general mouse, but it required 3$\sim$4 more times in the result of the experiment to evaluate spatial movements and events detection of the proposed mouse because of the low accuracy. We could eliminate cumbersome work to periodically remove the accumulated error and intuitively control the mouse using non-linear relative point method with dead zones. Optical sensors are used in the event detection circuitry designed to remove the influence of the ambient light changes, therefore it was not affected in the change of external light source.

본 연구에서는 자동차 사고나 뇌졸중 둥에 의해 경추 이하의 마비나 손, 발 등의 움직임이 자유롭지 못한 사람들의 컴퓨터 사용을 돕고자 손이나 발을 이용하지 않고 머리의 움직임과 눈의 깜박임만으로 컴퓨터 마우스 제어가 가능한 장치를 제안하였다. 마우스의 위치는 각속도 센서를 이용하여 머리의 움직임으로 추정하고, 눈 깜빡임에 의한 클릭과 더블 클릭은 광센서의 시야를 방해하지 않는 위치에 장착하여 커 클위치와 이벤트를 검출하였다. 제안한 마우스의 공간 이동 능력과 이벤트 검출을 비교한 실험에서는 좌우, 상하 이동은 기존 마우스와 비교하여 속도 면에서는 큰 차이는 없었으나, 정확도가 조금 떨어지는 이유로 인하여 정확한 위치로 이동시키는데 소요시간이 3$\sim$4배 정도 더 필요하였다. 데드 존을 갖는 비선형 상대 좌표계 방식을 이용하여 주기적으로 적분 에러를 제거해야 하는 문제를 해결하였고, 이동 거리와 속도를 함께 고려하여 직관적인 마우스 포인터 제어가 가능하도록 하였다. 주변광의 영향을 최소화하도록 광원 제어 회로를 설계하여 외부 광원의 변화에도 마우스 이벤트 검출이 영향을 받지 않았다.

Keywords

References

  1. 안용식, 자이로 센서와 인공신경망을 이용한 장애인용 컴퓨터 인터페이스, 의공학협동과정. 2006, 건국대학교
  2. Yu-Luen, C., Application of tilt sensors in human-computer mouse interface for people with disabilities. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2001. 9(3): p. 289-294 https://doi.org/10.1109/7333.948457
  3. Gwangmoon Eom, et al., Gyro-Mouse for the Disabled: 'Click' and 'Position'Control of the Mouse Cursor. International Journal of Control, Automation, and Systems, 2007. 5(2): p. 147-154
  4. 김종성 등., 생체신호 기반 사용자 인터페이스 기술. 전자통신동향분석, 2005. 20
  5. Kumar, D. and E. Poole. Classification of EOG for human computer interface. in [Engineering in Medicine and Biology, 2002. 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] EMBS/BMES Conference, 2002. Proceedings of the Second Joint. 2002 https://doi.org/10.1109/IEMBS.2002.1134390
  6. Kwon, S.H., et al., Kim. EOG-based glasses-type wireless mouse for the disabled. in [Engineering in Medicine and Biology, 1999. 21st Annual Conf. and the 1999 Annual Fall Meeting of the Biomedical Engineering Soc.] BMES/EMBS Conference, 1999. Proceedings of the First Joint. 1999 https://doi.org/10.1109/IEMBS.1999.802670
  7. Barea, R., et al., System for assisted mobility using eye movements based on electrooculography. Neural Systems and Rehabilitation Engineering, IEEE Transactions on, 2002. 10(4): p. 209-218 https://doi.org/10.1109/TNSRE.2002.806829
  8. Virtual Realities, I. GyroTrack. [cited; Available from: http://www.vrealities.com/gyrotrack.html
  9. 주진선 등, 다중 얼굴 특징 추적을 이용한 복지형 인터페이스. Welfare Interface using Multiple Facial Features Tracking, 2008. 45(1): p. 75-83
  10. Magee, J.J., et al., A Human-Computer Interface Using Symmetry Between Eyes to Detect Gaze Direction. Systems, Man and Cybernetics, Part A, IEEE Transactions on, 2008. 38(6): p. 1-1261 https://doi.org/10.1109/TSMCA.2008.2003466
  11. Track, F. Free Track. [cited; Available from: http://www.free-track.net]
  12. Virtual Realities, I. Head tracker. [cited; Available from: http://www.vrealities.com/headtrackers.html
  13. Instruments, O. HeadMouse${\circledR}$ Extreme. [cited; Available from: http://www.orin.com/access/headmouse/]
  14. Evans, D.G., et al., Controlling mouse pointer position using an infrared head-operated joystick. Rehabilitation Engineering, IEEE Transactions on, 2000. 8(1): p. 107-117 https://doi.org/10.1109/86.830955
  15. Kazuo Kawasaki, et al., Automated measurement of the electro-oculogram for clinical use. Documenta Ophthalmologica, 1987. 66(1): p. 85-94 https://doi.org/10.1007/BF00144739
  16. Jeong, H., J.-S. Kim, and J.-S. Choi, A Study of an EMG-controlled HCI Method by Clenching Teeth, in Computer Human Interaction. 2004. p. 163-170 https://doi.org/10.1007/978-3-540-27795-8_17
  17. Keirn, Z.A. and J.I. Aunon, Man-machine communications through brain-wave processing. Engineering in Medicine and Biology Magazine, IEEE, 1990. 9(1): p. 55-57 https://doi.org/10.1109/51.62907
  18. Schalk, G., et al., BCI2000: a general-purpose brain-computer interface (BCI) system. Biomedical Engineering, IEEE Transactions on, 2004. 51(6): p. 1034-1043 https://doi.org/10.1109/TBME.2004.827072
  19. Adjouadi, M., et al., A Real-Time Voice Controlled Human Computer Interface to Help Persons with Motor Disability, in Computers Helping People with Special Needs. 2004. p. 804-812 https://doi.org/10.1007/978-3-540-27817-7_119
  20. Youngwook, Kim, Development of headset-type computer mouse using gyro sensors for the handicapped. Electronics Letters, 2002. 38(22): p. 1313-1314 https://doi.org/10.1049/el:20020950