• Title/Summary/Keyword: position control system

Search Result 3,682, Processing Time 0.044 seconds

Cell Image Acquisition and Position Control of the Electron Microbeam System for Individual Cell Irradiation (마이크로 전자빔 개별 세포 조사장치의 세포 영상 획득 및 위치 제어)

  • Park, Seung-Woo;Lee, Dong-Hoon;Hong, Seung-Hong
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.42 no.6
    • /
    • pp.49-56
    • /
    • 2005
  • An electron microbeam system has been developed to investigate the biological effect of cells by irradiating cell-nuclei with low-energy and low-flux electrons. It is essential to discern the cell nucleus from its cytoplasm and the culture medium and to locateit exactly onto the beam exit. The irradiation speed at more than 10,000 cells per hour is another requisite for the observations on cellular response to have good statistics. Long-time labor with patience and high concentration is needed since the frames of $320{\times}240{\mu}m^2$ should be moved more than 500 times for irradiating more than 10,000 cells per an hour. This paper describes the electron microbeam system with a focus on the user interfaces concerning the process of automatically recognizing the cell nuclei and injecting electron beam into the target cell nuclei at the irradiation speed of more than 10,000 cell nuclei per hour.

High Efficiency AMOLED using Hybrid of Small Molecule and Polymer Materials Patterned by Laser Transfer

  • Chin, Byung-Doo;Suh, Min-Chul;Kim, Mu-Hyun;Kang, Tae-Min;Yang, Nam-Choul;Song, Myung-Won;Lee, Seong-Taek;Kwon, Jang-Hyuk;Chung, Ho-Kyoon;Wolk, Martin B.;Bellmann, Erika;Baetzold, John P.
    • Journal of Information Display
    • /
    • v.4 no.3
    • /
    • pp.1-5
    • /
    • 2003
  • Laser-Induced Thermal Imaging (LITI) is a laser addressed patterning process and has unique advantages such as high-resolution patterning with over all position accuracy of the imaged stripes of within 2.5 micrometer and scalability to large-size mother glass. This accuracy is accomplished by real-time error correction and a high-resolution stage control system that includes laser interferometers. Here the new concept of hybrid system that complement the merits of small molecule and polymer to be used as an OLED; our system can realize easy processing of light emitting polymers and high luminance efficiency of small molecules. LITI process enables the stripes to be patlerned with excellent thickness uniformity and multi-stacking of various functional layers without having to use any type of fine metal shadow mask. In this study, we report a full-color hybrid OLED using the multi-layered structure consisting of small molecules and polymers.

A Study on the Navigation Data Transmission-Management System of a Small Vessel (소형선박의 항행정보 전송관리시스템에 대한 연구)

  • 조학현;최조천;최병하;김기문
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.1
    • /
    • pp.191-200
    • /
    • 2000
  • The marine accident is being highlighted as a serious worldwide problem for the guard station of human safety and the protection of marine environment pollution. Especially, the GMDSS is operated as a international rule for the safety of a large scale ship, but the small size ship's management is required a adaptive national rule because of the complex condition of national circumstance. This study is motivated to develop a ship's position tracking system combined with GPS information for VTS and control the ship navigation, velocity and longitude etc.. In Part of Navigation Data Transmission is GPS data transmission whih ship's ID using microprocessor and TX speed translation for flexibility with 4800∼2400 [bps]. Results show that the our system for data transmission using microprocessor is useful tool in maritime transmission as SSB used the main TX method of small ship and has a cost competitive power. Therefore, we will expected cost and technical competitive power compared to AIS. But those systems are still remained the unsolved problem for protection from marine accident.. Finally, we examined the semi-actual receiving state on simulated sailing in the around sea of Mok-Po harbor.

  • PDF

Design of a GCS System Supporting Vision Control of Quadrotor Drones (쿼드로터드론의 영상기반 자율비행연구를 위한 지상제어시스템 설계)

  • Ahn, Heejune;Hoang, C. Anh;Do, T. Tuan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.10
    • /
    • pp.1247-1255
    • /
    • 2016
  • The safety and autonomous flight function of micro UAV or drones is crucial to its commercial application. The requirement of own building stable drones is still a non-trivial obstacle for researchers that want to focus on the intelligence function, such vision and navigation algorithm. The paper present a GCS using commercial drone and hardware platforms, and open source software. The system follows modular architecture and now composed of the communication, UI, image processing. Especially, lane-keeping algorithm. are designed and verified through testing at a sports stadium. The designed lane-keeping algorithm estimates drone position and heading in the lane using Hough transform for line detection, RANSAC-vanishing point algorithm for selecting the desired lines, and tracking algorithm for stability of lines. The flight of drone is controlled by 'forward', 'stop', 'clock-rotate', and 'counter-clock rotate' commands. The present implemented system can fly straight and mild curve lane at 2-3 m/s.

Power peaking factor prediction using ANFIS method

  • Ali, Nur Syazwani Mohd;Hamzah, Khaidzir;Idris, Faridah;Basri, Nor Afifah;Sarkawi, Muhammad Syahir;Sazali, Muhammad Arif;Rabir, Hairie;Minhat, Mohamad Sabri;Zainal, Jasman
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.608-616
    • /
    • 2022
  • Power peaking factors (PPF) is an important parameter for safe and efficient reactor operation. There are several methods to calculate the PPF at TRIGA research reactors such as MCNP and TRIGLAV codes. However, these methods are time-consuming and required high specifications of a computer system. To overcome these limitations, artificial intelligence was introduced for parameter prediction. Previous studies applied the neural network method to predict the PPF, but the publications using the ANFIS method are not well developed yet. In this paper, the prediction of PPF using the ANFIS was conducted. Two input variables, control rod position, and neutron flux were collected while the PPF was calculated using TRIGLAV code as the data output. These input-output datasets were used for ANFIS model generation, training, and testing. In this study, four ANFIS model with two types of input space partitioning methods shows good predictive performances with R2 values in the range of 96%-97%, reveals the strong relationship between the predicted and actual PPF values. The RMSE calculated also near zero. From this statistical analysis, it is proven that the ANFIS could predict the PPF accurately and can be used as an alternative method to develop a real-time monitoring system at TRIGA research reactors.

Numerical simulation of localization of a sub-assembly with failed fuel pins in the prototype fast breeder reactor

  • Abhitab Bachchan;Puspendu Hazra;Nimala Sundaram;Subhadip Kirtan;Nakul Chaudhary;A. Riyas;K. Devan
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3648-3658
    • /
    • 2023
  • The early localization of a fuel subassembly with a failed (wet rupture) fuel pin is very important in reactors to limit the associated radiological and operational consequences. This requires a fast and reliable system for failure detection and their localization in the core. In the Prototype Fast Breeder Reactor, the system specially designed for this purpose is Failed Fuel Location Modules (FFLM) housed in the control plug region. It identifies a failed sub-assembly by detecting the presence of delayed neutrons in the sodium from a failed sub-assembly. During the commissioning phase of PFBR, it is mandatory to demonstrate the FFLM effectiveness. The paper highlights the engineering and physics design aspects of FFLM and the integrated simulation towards its function demonstration with a source assembly containing a perforated metallic fuel pin. This test pin mimics a MOX pin of 1 cm2 of geometrical defect area. At 10% power and 20% sodium flow rate, the counts rate in the BCCs of FFLM system range from 75 cps to 145 cps depending upon the position of DN source assembly. The model developed for the counts simulation is applicable to both metal and MOX pins with proper values of k-factor and escape coefficient.

Multiple Target Management of Air-to-Air mode on Airborne AESA Radar (항공기 탑재 AESA 레이다의 공대공 모드 다표적 관리 기법)

  • Yong-min Kim;Ji-eun Roh
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.5
    • /
    • pp.580-586
    • /
    • 2023
  • AESA radar is able to instantaneously and adaptively position and control the beam, and this enables to greatly improve multi-target tracking capability with high accuracy in comparison to traditional mechanically-scanned radar system. This paper is primarily concerned with the development of an efficient methodology for multi-target managenent with the context of multi-target environment employing AESA radar. In this paper, targets are stratified into two principal categories: currently displayed targets and non-display targets, predicated upon their relative priority. Displayed targets are subsequently stratified into TOI (target of interest), HPT (high priority target), and SAT (situational awareness target), based on the requisite levels of tracking accuracy. It also suggests rules for determining target priority management, especially in air-to-air mode including interleaved mode. This proposed approach was tested and validated in a SIL (system integration lab) environment, applying it to AESA radars mounted on aircraft.

Analysis and Improvement of Growing Environment of Two Tier Cropping Systems in Plastic Film House (플라스틱 온실내 2단 재배 시스템의 생육환경분석 및 개선)

  • 김문기;김기성
    • Journal of Bio-Environment Control
    • /
    • v.8 no.1
    • /
    • pp.49-55
    • /
    • 1999
  • This study aims at analyzing environment factors of two tier cropping systems and suggesting effective structures of two tier cropping systems. The environment factors in two tier cropping systems are temperature, relative humidity, solar radiation, temperature of nutrient solution, and wind velocity. Especially, The most important factors are the solar radiation and the solar incident area between the two tiers. During the experiment, observations were made of the two levels in the plastic greenhouse. The highest temperatures were 38.3$^{\circ}C$ in the top level and, 35.5$^{\circ}C$ in the bottom level, respectively. The temperature of the nutrient solution between the two levels showed little difference. The relative humidity in the top level was 60~7o% and that in the bottom 65~80%, exhibiting that the bottom is approximately 10% higher. Change of photosynthetic photon flux density and solar radiation both have a tendency to be similar. The wind velocities for both levels were recorded at 0.1m.s$^{-1}$ in the afternoon and 0.05m.s$^{-1}$ in the evening. The solar incident areas in the bottom level increased by approximately 25% at an East-West position and 17.7% at a South-North position, respectively.

  • PDF

STATION-KEEPING FOR COMS SATELLITE BY ANALYTIC METHODS (해석적인 방법을 사용한 통신해양기상위성의 위치유지)

  • Kim Young-Rok;Kim Hae-Yeon;Park Sang-Young;Lee Byoung-Sun;Park Jae-Woo;Choi Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.23 no.3
    • /
    • pp.245-258
    • /
    • 2006
  • In this paper, an automation algorithm of analyzing and scheduling the station-keeping maneuver is presented for Communication, Ocean and Meteorological Satellite (COMS). The perturbation analysis for keeping the position of the geostationary satellite is performed by analytic methods. The east/west and north/south station-keeping maneuvers we simulated for COMS. Weekly east/west and biweekly north/south station-keeping maneuvers are investigated for a period of one year. Various station-keeping orbital parameters are analyzed. As the position of COMS is not yet decided at either $128.2^{\circ}E\;or\;116.0^{\circ}E$, both cases are simulated. For the case of $128.2^{\circ}E$, east/west station-keeping requires ${\Delta}V$ of 3.50m/s and north/south station-keeping requires ${\Delta}V$ of 52.71m/s for the year 2009. For the case of $116.0^{\circ}E,\;{\Delta}V$ of 3.86m/s and ${\Delta}V$ of 52.71m/s are required for east/west and north/south station-keeping, respectively. The results show that the station-keeping maneuver of COMS is more effective at $128.2^{\circ}E$.

Georeferencing of Indoor Omni-Directional Images Acquired by a Rotating Line Camera (회전식 라인 카메라로 획득한 실내 전방위 영상의 지오레퍼런싱)

  • Oh, So-Jung;Lee, Im-Pyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.2
    • /
    • pp.211-221
    • /
    • 2012
  • To utilize omni-directional images acquired by a rotating line camera for indoor spatial information services, we should register precisely the images with respect to an indoor coordinate system. In this study, we thus develop a georeferencing method to estimate the exterior orientation parameters of an omni-directional image - the position and attitude of the camera at the acquisition time. First, we derive the collinearity equations for the omni-directional image by geometrically modeling the rotating line camera. We then estimate the exterior orientation parameters using the collinearity equations with indoor control points. The experimental results from the application to real data indicate that the exterior orientation parameters is estimated with the precision of 1.4 mm and $0.05^{\circ}$ for the position and attitude, respectively. The residuals are within 3 and 10 pixels in horizontal and vertical directions, respectively. Particularly, the residuals in the vertical direction retain systematic errors mainly due to the lens distortion, which should be eliminated through a camera calibration process. Using omni-directional images georeferenced precisely with the proposed method, we can generate high resolution indoor 3D models and sophisticated augmented reality services based on the models.