• Title/Summary/Keyword: position control system

Search Result 3,682, Processing Time 0.034 seconds

A High-Performance Sensorless Control System of Reluctance Synchronous Motor with Direct Torque Control

  • Kim Min-Huei;Kim Nam-Hun;Choi Kyeong-Ho;Kim Dong-Hee;Hwang Dong-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.355-359
    • /
    • 2001
  • This paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with DTC. The control system consists of stator flux observer, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP controller by using fully integrated control software. The stator flux observer is based on the combined voltage and current model with stator flux feedback adaptive control that inputs are current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated by observed stator flux-linkage space vector. The estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operating area. It does not require the knowledge of any motor parameters, nor particular care for motor starting, In order to prove the suggested control algorithm, we have a simulation and testing at actual experimental system. The developed sensorless control system is shown a good speed control response characteristic results and high performance features in 50/1000 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

  • PDF

A High-Performnce Sensorloss Control System of Reluctance Synchronous Motor with Direct Torque Control by Consideration of Nonlinerarly Inductances

  • Kim, Min-Huei;Kim, Nam-Hun;Baik, Won-Sik
    • Journal of Power Electronics
    • /
    • v.2 no.2
    • /
    • pp.146-153
    • /
    • 2002
  • this paper presents an implementation of digital control system of speed sensorless for Reluctance Synchronous Motor (RSM) drives with direct torque control (DTC). The problem of DTC for high-dynamic performance RSM drive is generating a nonlinear torque due to a saturated nonlinear inductance curve with various load currents. The control system consists of stator flux observer, compensating inductance look-up table, rotor position/speed/torque estimator, two hysteresis band controllers, an optimal switching look-up table, IGBT voltage source unverter, and TMS320C31 DSP controller. The stator flux observer is based on the combined voltage and current model with stator flux feedback adapitve control that inputs are the compensated inductances, current and voltage sensing of motor terminal with estimated rotor angle for wide speed range. The rotor position is estimated rotor speed is determined by differentiation of the rotor position used only in the current model part of the flux observer for a low speed operation area. It does not requrie the knowledge of any montor paramenters, nor particular care for moter starting, In order to prove the suggested control algorithm, we have simulation and testing at actual experimental system. The developed sensorless control system is showing a good speed control response characterisitic result and high performance features in 20/1500 rpm with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

Precision position control of piezoelectric actuator (압전액추에이터 정밀 위치 제어)

  • Yun S.;Kim C.Y.;Ham Y.B.;Jo J.;Ahn B.K.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.531-536
    • /
    • 2005
  • The purpose of this paper is to improve the hysteresis characteristics of a stack type piezoelectric actuator using system identification and tracking control. Recently, several printing methods that cost less and are faster than previous semiconductor processes have been developed for the production of electric paper and RFID. The system proposed in this study prints by spraying the molten metal, and consists of a nozzle, heating furnace, operating actuator, and an XYZ 3-axis stage, As an operating system, the piezoelectric(PZT) method has very valuable uses. However, the PZT actuator has a very big hysteresis characteristic due to the ferroelectric characteristics of the PZT element. This causes problems in the system position control characteristics and deteriorates the performance of the system. In this study, an investigation was conducted to improve the hysteresis characteristics of the PZT actuator that has an output displacement for the input voltage. The study proposed a inverse hysteresis model, a mathematic modeling method that can express the geometric relationship between voltage and displacement, in order to reduce the hysteresis of the PZT actuator. In addition, system identification and PID control methods were examined. Also, it was confirmed that the proposed control strategy gives good precision position control performance.

  • PDF

Fuzzy control of a robot manipulator in Cartesian space (Cartesian 공간에서 로봇 머니퓰레이터의 퍼지제어)

  • 곽희성;강철구
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1995.10b
    • /
    • pp.165-173
    • /
    • 1995
  • In order to eliminate position errors existing at the steady state in the motion control of robotic maniprlators, a new fuzzy control algorithm is proposed using three variables, position error, velocity error and integral of position errors as input variables of the fuzzy controller, This controller is applied to the tracking control of robotic manipulators in Cartesian space. Three dimensional look-up table is used to reduce the computational time in rel-time control. Simulation and experimental studies are conducted to evaluate the control performance for the two axis direct drive SCARA robot system.

  • PDF

The Application of Fuzzy Reaching Law Control in AC Position Servo System

  • Yang Yangxi;Liu Ding
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.360-364
    • /
    • 2001
  • In this paper, a novel method of reaching law variable structure control based on fuzzy rules is present, which is that the reaching law parameters is on-line adjusted by fuzzy rules. This method is used in a digital ac position servo system, the experiment results show that the system designed by this method has both satisfactory quality and very smaller chattering.

  • PDF

The Position Control by Neuro - Network PID controller (신경망 PID 제어기에 의한 위치제어)

  • 이진순;하홍곤;고태언
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2003.06a
    • /
    • pp.145-148
    • /
    • 2003
  • In this paper an nonlinear neuro PID controller is constructed by the control system of general PID controller using a Self-Recurrent Neural Network. And the games of the PID controller in the proposed control system are automatically adjusted by back-propagation algorithm of the neural network. Applying to the position control system, it's performance is verified through the results of computer simulation.

  • PDF

Position Control of Fuzzy-Sliding Mode Controller (퍼지-슬라이딩모드 제어를 이용한 위치제어에 관한 연구)

  • 한경욱;임영도
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.221-224
    • /
    • 2000
  • We consider one of robust controller, fuzzy-sliding mode controller dealing with model uncertainty, simplified representation of nonlinear system, changed parameters of plant. We propose fuzzy-sliding mode algorithm which provides control input that has system states approaching the choosed sliding surface. This fuzzy controller has a rule base to get initial states converged on sliding surface. This algorithm Is applied to a transfer function of DC motor to be modeled simply and do position control of DC motor due to system parameters. We compare fuzzy-sliding mode controller to both sliding mode controller and fuzzy controller to identify roust control.

  • PDF

Comparative Characteristic Analysis of a Hydraulic Control System Using a Speed Controlled Hydraulic Pump (유압펌프 회전속도 제어방식 유압제어시스템의 특성 비교 분석)

  • Jeong, H.S.;Jeong, S.W.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.7 no.3
    • /
    • pp.13-19
    • /
    • 2010
  • Hydraulic systems are widely used as a power transfer and/or power control system due to its flexibility, controllability, accuracy and high power density. Valve controlled and/or pump capacity controlled systems are normally adopted as a control device, but nowadays pump speed controlled systems are emerging as a new energy-efficient hydraulic control system. In this paper the pump speed controlled system for the cylinder position control of a counter balance circuit is investigated by simulation study and position control experiments were carried out. As a result, the possibility and efficiency of the pump speed controlled system were verified.

  • PDF

A Design of Adaptive Controller with Nonlinear Dynamic Friction Compensator for Precise Position Control of Linear Motor System (선형모터 정밀 위치제어를 위한 비선형 동적 마찰력 보상기를 갖는 적응 제어기 설계)

  • Lee, Jin-Woo;Cho, Hyun-Cheol;Lee, Young-Jin;Lee, Kwom-Soon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.5
    • /
    • pp.944-957
    • /
    • 2007
  • In general mechanical servo systems, friction deteriorates the performance of controllers by its nonlinear characteristics. Especially, friction phenomenon causes steady-state tracking errors and limit cycles in position and velocity control systems, even though gains of controllers are tuned well in linear system model. Even if sensor is used higher accuracy level, it is difficult to improve tracking performance of the position to the same level with a general control method such as PID type. Therefore, many friction models were proposed and compensation methods have been researched actively. In this paper, we consider that the variation of mover's mass is various by loading and unloading. The normal force variation occurs by it and other parameters. Therefore, the proposed control system is composed of main position controller and a friction compensator. A parameter estimator for a nonlinear friction model is designed by adaptive control law and adaptive backstopping control method.

LOS (Line of Sight) Algorithm and Unknown Input Observer Based Leader-Follower Formation Control (LOS 알고리듬과 미지 입력 관측기에 기초한 선도-추종 대형 제어)

  • Yoon, Suk-Min;Yeu, Tae-Kyeong;Park, Seong-Jea;Hong, Sup;Kim, Sang-Bong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.207-214
    • /
    • 2010
  • This paper proposes about decentralized control approach based Leader-Follower formation control using LOS (Line of Sight) algorithm and unknown input observer. The position of robots which is a basic information in multi-robot or single robot motion control is determined by localization algorithm fusing UPS (Ultrasonic Position System) and kinematics model. For formation control, a decentralized control approach individually installing a local controller in leader and follower robot is adopted. Leader robot is controlled to track a specified trajectory by LOS algorithm, and the other robots follow the leader by local controller based on tracking platoon level function, self-sensing data and estimated information from unknown input observer. The performance of proposed method is proven through the formation experiment of two vehicle models.