• Title/Summary/Keyword: position control system

Search Result 3,682, Processing Time 0.028 seconds

A Study on the Position Control of BLDC Motor with New Sliding Surface (새로운 슬라이딩 면을 가지는 BLDC 모터의 위치 제어에 관한 연구)

  • 박수식;이상오;정세교;이대식
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.84-88
    • /
    • 1997
  • A robust position control system for a BLDC motor using new sliding mode control strategy is presented. Using the new variable structure system, reaching phase problem is eliminated and performance is largely improved. The simulation results show the validity of proposed scheme.

  • PDF

A Position Control of Nonlinear Hydraulic System using Variable Design-Parameter Fuzzy PID Controller (가변 설계 파라미터 퍼지 PID 제어기를 이용한 비선형 유압시스템의 위치 제어)

  • 김인환;김종화;김진규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.136-144
    • /
    • 2004
  • In general a hydraulic system which uses a single rod hydraulic as an actuator is modeled as a nonlinear system and reveals uncertain Parameter characteristics such as the density variation of hydraulic oil and is subject to load variations and severe disturbances during operation. A variable design-parameter fuzzy PID controller is adopted to solve these undesirable internal and external problems and its effectiveness is verified through computer simulations for control performance and real time control possibility.

Implementation of Position Decision System by Stepping Motor (스테핑 모터를 이용한 위치 판독 시스템의 구현)

  • Ham, Eun-Sik;Heo, Gang;Gong, Hwi-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.299-303
    • /
    • 2003
  • Position decision system embody to interpret for observation target position. Observation target is observed at observation post of 3 places. CCD cameras of observation post is achieved turning control by stepping motor. Controller interpret observation target's position to use direction and angle information of observation post. Controller and observation post used PIC16F877. PIC16F877 achieves rotation control of stepping motor and distance arithmetic of observation target. Result that measure this system 50 times was achieved correct position interpretation of 47 times. Position interpretation failure of 3 times was construed for cause in used controller special quality.

  • PDF

Hall Sensor Fault Detection and Fault-Tolerant Control of High-Speed PMSM Drive System (고속 영구자석 동기전동기 구동장치의 홀센서 고장검출 및 보호제어)

  • Jang, Myung-Hyuk;Lee, Kwang-Woon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.205-210
    • /
    • 2013
  • This paper presents a novel hall sensor fault detection and fault-tolerant control method for a high-speed permanent magnet synchronous motor (PMSM) drive system. A phase locked loop (PLL) type position estimator is used with a conventional interpolation based rotor position estimator to reduce position errors due to misalignment of hall sensors. The expected trigger time of hall sensor's output is used for detecting hall sensor fault condition and the PLL type position estimator is reconfigured for fault-tolerant control at the hall sensor fault condition. The proposed method can minimize current ripples during the transition from sensored control using hall sensors to sensorless control. Experimental results have been proposed to prove the validity of the proposed method.

A Study on Position Control of the Direct Drive Robot Using Neural Networks (신경회로망을 이용한 직접 구동형 로봇의 위치제어에 관한 연구)

  • 신춘식;황용연;노창주
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.21 no.3
    • /
    • pp.284-292
    • /
    • 1997
  • This paper is concerned with position control of direct drive robots. The proposed algorithm consists of the feedback controller and neural networks. Mter the completion of learning, the output of the feedback controller is nearly equal to zero, and the neural networks play an important role in the control system. Therefore, the optimum retuning of control parameters is unnecessary. In other words, the proposed algorithm does not need any knowledge of the con¬trolled system in advance. The effectiveness of the proposed algorithm is demonstrated by the experiment on the position control of a parallelogram link-type direct drive robot.

  • PDF

Development of multi-object image processing algorithm in a image plane (한 이미지 평면에 있는 다물체 화상처리 기법 개발)

  • 장완식;윤현권;김재확
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.555-555
    • /
    • 2000
  • This study is concentrated on the development of hight speed multi-object image processing algorithm, and based on these a1gorithm, vision control scheme is developed for the robot's position control in real time. Recently, the use of vision system is rapidly increasing in robot's position centre. To apply vision system in robot's position control, it is necessary to transform the physical coordinate of object into the image information acquired by CCD camera, which is called image processing. Thus, to control the robot's point position in real time, we have to know the center point of object in image plane. Particularly, in case of rigid body, the center points of multi-object must be calculated in a image plane at the same time. To solve these problems, the algorithm of multi-object for rigid body control is developed.

  • PDF

생산공장용 무궤도 무인운반차 개발

  • 한석균;김용일;강무진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.286-290
    • /
    • 2001
  • This paper presents a full-digital low-level controller for a robotic material transfer system which has been developed for a computer-integrated manufacturing model plant. Compared to conventional analog or hybrid type controllers in current industrial environments, this controller system has some advantages such as strong noise-immunity, easy control algorithm implementation, etc The servo-controller consists of two modules, a position controller and a DC servo motor driver. The position controller operates position feedback routines by receiving position encoder data and sending control outputs to the driver. The position controller is implemented in a full-digital way using a recently introduced microcontroller. The DC servomotor driver controls speeds and torques. The driver consists of a micro-controller and insulated-gate-bipolar-transistors (IGBT). The micro-controller provides control signals, and the IGBT's amplifies the control signals and sends them to the motor.

A Study on Position Recognition of Bucket Tip for Excavator (굴삭기의 버킷 끝단 위치인식에 관한 연구)

  • Kim, Jae Hoon;Bae, Jong Ho;Jung, Woo Yong
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.49-53
    • /
    • 2016
  • The accurate calculation of bucket tip position has a large influence on showing the motion of an excavator on the display device of the excavator and controlling the excavator automatically. It is generally known that Inertial Measurement Unit (IMU) sensors are more accurate than accelerometer-based sensors while the boom, arm or bucket moves because additional forces beyond gravity add additional acceleration to the sensors. To prove the accuracy difference between the two types of sensors, a position recognition system using an accelerometer-based sensor and an IMU sensor is implemented on the excavator. The experimental results show that the system using the IMU sensor significantly reduces the position recognition error while bucket moves and additional force beyond gravity exists.

Development of Ultrasonic Machine with Force Controlled Position Servo System (가공력 제어 위치 서보 시스템을 이용한 초음파 가공기의 개발)

  • 장인배;이승범;전병희
    • Transactions of Materials Processing
    • /
    • v.13 no.3
    • /
    • pp.253-261
    • /
    • 2004
  • The machining technology for the brittle materials such as ceramics are applied to the fields of MEMS(micro electromechanical system) by the progress of new machining technologies such as Etching, Diamond machining, Micro drilling, EDM(Electro discharge machining), ECDM(Electro discharge machining), USM(Ultrasonic machining), LBM(Laser beam machining), EBM(Electron beam machining). Especially, the USM technology can be applied to the dieletric brittle materials such as silicon, borosilicate glass, silicon nitride, quartz and ceramics with high aspect ratio. The micro machining system with machining force controlled position servo is developed in this paper and the optimized ultrasonic machining algorithm is constructed by the force controlled position servo control. The load cell is adapted in the force measuring and the servo control algorithm, suit for the ultrasonic machining characteristics, is estabilished with using the PID auto-tunning functions at the PMAC system which is generally adapted in the field of robot industries. The precision force signal amplifier is constructed with high precision operational amplifier AD524. The vacuum adsorption chuck which is made of titanum and internal flow line is engraved, is used in the workpiece fixing. The mahining results by USM shows that there are some deviation between the force command and the actual machining force that the servo control algorithm should be applied in the machining procedures. Therefore, the constant force controlled position servo system is developed for the micro USM system and by the examination machining process in USM, the stable USM system is realized by tracking the average value of machining force.

A study of the position control of the BALL-HOOP system (BALL-HOOP시스템의 위치 제어에 관한 연구)

  • 주해호;이훈구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.282-285
    • /
    • 1989
  • This paper presents a new algorithm for position control of the BALL-HOOP system driven by th D.C. servo motor-through the micro computer simulation. The Stale Feed back + PID control algorithm is proposed. This algorithm performs that the settling time is faster and overshoot is decreased more remarkably than the PID and the State Feedback algorithm alone. In this simulation the difference equations are used to calculate the output of the control system.

  • PDF