• Title/Summary/Keyword: position control loop

Search Result 396, Processing Time 0.023 seconds

A control system for dual-axis linear motor

  • Uchida, Yoshiyuki;Nohira, Shigemitsu;Seike, Yoshiyuki;Shingu, Hiroyasu;Sumi, Tetsuo;Furuhashi, Hideo;Yamada, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.340-343
    • /
    • 1992
  • Fundamental positioning characteristics of a dual-axis Sawyer linear motor are described. The Sawyer motor is capable of high positional accuracy. An electronic control unit of the motor whose velocity is proportional to the frequency of the electric current was produced in our laboratory. The positioning system was constructed using two Sawyer motors, an air bearings suspension unit and an electronic control unit. The stable motion of the motor was confirmed on the open loop operation. The adjustable operating conditions were the live load of 1 kg, the maximum acceleration of 1.2G and the maximum velocity of 350 mm/s. Absolute positioning accuracy was improved within .+-.5.mu.m, on microstep operating conditions of dividing one pitch of 508.mu.m into 508 steps. The following two conclusions were obtained. An accelerating-cruising-decelerating control is effective for reduction in the travel time required. Also, microstep operation is effective for improving the resolution of position.

  • PDF

Contour error analysis and PID controller design for machining center (머시닝센터를 위한 윤곽오차 분석 및 PID 제어기 설계)

  • Na, Il-Ju;Choi, Jong-Ho;Jang, Tae-Jeong;Choi, Byeong-Kap;Song, O-Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.32-39
    • /
    • 1997
  • One of the most important performance criteria in tuning the gain of position loop controller for CNC machining center is the contour error. In this papre we analyze contour error in the linear and circular interpolations for the axis-matched and mismatched cases. To have small contour errors, it is necessary to set the P gain for each axis to be same. And the D gain should be much smaller than the P gain. Baded on the analysis in the frequency domain, we propose a gain tuning method for the P and PD controllers. We show that the PD controller is better than the P controller. The effectiveness of this method is demonstrated by experiments.

  • PDF

Capacity Optimization of a 802.16e OPDMA/TDD Cellular System using the Joint Allocation Algorithm of Sub-charmel and Transmit Power - Part II : Sub-channel Allocation in the Uplink Using the Channel Sounding and Initial Transmit Power Decision Algorithm According to the User's Throughput (802.16e OFDMA/TDD 셀룰러 시스템의 성능 최적화를 위한 부채널과 전송전력 결합 할당 알고리즘 - Part II : 상향링크에서 Channel Sounding을 통한 부채널 할당 및 사용자의 수율에 따른 초기전송전력 결정 알고리즘)

  • Ko, Sang-Jun;Chang, Kyung-Hi;Kim, Jae-Hyeong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.9A
    • /
    • pp.888-897
    • /
    • 2007
  • In this paper, we propose an uplink dynamic resource allocation algorithm to increase sector throughput and fairness among users in 802.16e OFDMA TDD system. In uplink, we address the difference between uplink and downlink channel state information in 802.16e OFDMA TDD system. The simulation results show that not only an increment of 10% of sector throughput but higher level of fairness is achieved by round-robin using the FLR and the rate / margin adaptive inner closed-loop power control algorithm. The FLR algorithm determines the number of sub-channels to be allocated to the user according to the user's position. Also, we get 31.8% more sector throughput compared with the round-robin using FLR by FASA algorithm using uplink channel state information. User selection, sub-channel allocation, power allocation algorithms and simulation methodology are mentioned in Part I.

Establishment of Real-time HILS Environment for Small UAV Using 6 D.O.F Motion Table (6자유도 모션테이블을 이용한 소형 무인항공기용 실시간 HILS 환경 구축)

  • Cha, Hyungkyu;Jeong, Jinseok;Shi, Hayoung;Yoon, Junseok;Kang, Beomsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.5
    • /
    • pp.326-334
    • /
    • 2019
  • Development of Small UAV using HILS (Hardware In the Loop Simulation) can be effectively used to improve the reliability of UAV (Unmanned Aerial Vehicle) while reducing cost and time. It is also possible to reduce the damage to people or property by simulating the malfunction of the Flight Control Computer (FCC) that may occur during the actual flight. For applying such HILS, a real-time simulation environment capable of providing an environment similar to an actual flight condition is required. In this paper, we constructed a real - time HILS environment for Small UAV using 6 D.O.F motion table. In order to link the 6 D.O.F motion table developed in the previous research with the HILS environment in real time, the motion algorithm was changed from the position control method to the velocity control method. Also, we implemented modeling of inverse kinematics model for command transmission in Matlab $Simulink^{(R)}$ and verified the action of motion table according to the simulation model.

Seamless Transition Strategy for Wide Speed-Range Sensorless IPMSM Drives with a Virtual Q-axis Inductance

  • Shen, Hanlin;Xu, Jinbang;Yu, Baiqiang;Tang, Qipeng;Chen, Bao;Lou, Chun;Qiao, Yu
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1224-1234
    • /
    • 2019
  • Hybrid rotor position estimation methods that integrate a fundamental model and high frequency (HF) signal injection are widely used for the wide speed-range sensorless control of interior permanent-magnet synchronous machines (IPMSMs). However, the direct transition of two different schemes may lead to system fluctuations or system instability since two estimated rotor positions based on two different schemes are always unequal due to the effects of parameter variations, system delays and inverter nonlinearities. In order to avoid these problems, a seamless transition strategy to define and construct a virtual q-axis inductance is proposed in this paper. With the proposed seamless transition strategy, an estimated rotor position based on a fundamental model is forced to track that based on HF signal injection before the transition by adjusting the constructed virtual q-axis inductance. Meanwhile, considering that the virtual q-axis inductance changes with rotor position estimation errors, a new observer with a two-phase phase-locked loop (TP-PLL) is developed to accurately obtain the virtual q-axis inductance online. Furthermore, IPMSM sensorless control with maximum torque per ampere (MTPA) operations can be tracked automatically by selecting the proper virtual q-axis inductance. Finally, experimental results obtained from an IPMSM demonstrate the feasibility of the proposed seamless transition strategy.

Position Control of Linear Motor by Using Enhanced Cross-Coupling Algorithm (개선된 교차축 연동제어기를 이용한 리니어 모터의 위치제어)

  • Han, Sang-Oh;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.369-374
    • /
    • 2010
  • Linear motors are easily affected by load disturbances, force ripples, friction, and parameter variations because there are no mechanical transmissions that can reduce the effects of model uncertainties and external disturbance. In this study, a nonlinear adaptive controller to achieve high-speed/high-accuracy position control of a two-axis linear motor is designed. The operation of this controller is based on a cross-coupling algorithm. Nonlinear effects such as friction and force ripples are estimated and compensated for. An enhanced cross-coupling algorithm is proposed for effectively improving the biaxial contour accuracy while achieving closed-loop stability. The proposed controller is evaluated by performing computer simulations.

Intelligent Lighting Control using Wireless Sensor Networks for Media Production

  • Park, Hee-Min;Burke, Jeff;Srivastava, Mani B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.5
    • /
    • pp.423-443
    • /
    • 2009
  • We present the design and implementation of a unique sensing and actuation application -- the Illuminator: a sensor network-based intelligent light control system for entertainment and media production. Unlike most sensor network applications, which focus on sensing alone, a distinctive aspect of the Illuminator is that it closes the loop from light sensing to lighting control. We describe the Illuminator's design requirements, system architecture, algorithms, implementation and experimental results. The system uses the Illumimote, a multi-modal and high fidelity light sensor module well-suited for wireless sensor networks, to satisfy the high-performance light sensing requirements of entertainment and media production applications. The Illuminator system is a toolset to characterize the illumination profile of a deployed set of fixed position lights, generate desired lighting effects for moving targets (actors, scenic elements, etc.) based on user constraints expressed in a formal language, and to assist in the set up of lights to achieve the same illumination profile in multiple venues. After characterizing deployed lights, the Illuminator computes optimal light settings at run-time to achieve a user-specified actuation profile, using an optimization framework based on a genetic algorithm. Uniquely, it can use deployed sensors to incorporate changing ambient lighting conditions and moving targets into actuation. Experimental results demonstrate that the Illuminator handles various high-level user requirements and generates an optimal light actuation profile. These results suggest that the Illuminator system supports entertainment and media production applications.

Grasping Impact-Improvement of Robot Hands using Proximate Sensor (근접 센서를 이용한 로봇 손의 파지 충격 개선)

  • Hong, Yeh-Sun;Chin, Seong-Mu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.42-48
    • /
    • 1999
  • A control method for a robot hand grasping a object in a partially unknown environment will be proposed, where a proximate sensor detecting the distance between the fingertip and object was used. Particularly, the finger joints were driven servo-pneumatically in this study. Based on the proximate sensor signal the finger motion controller could plan the grasping process divided in three phases ; fast aproach, slow transitional contact and contact force control. That is, the fingertip approached to the object with full speed, until the output signal of the proximate sensor began to change. Within the perating range of the proximate sensor, the finger joint was moved by a state-variable feedback position controller in order to obtain a smooth contact with the object. The contact force of fingertip was then controlled using the blocked-line pressure sensitivity of the flow control servovalve for finger joint control. In this way, the grasping impact could be reduced without reducing the object approaching speed. The performance of the proposed grasping method was experimentally compared with that of a open loop-controlled one.

  • PDF

A High Performance Permanent Magnet Synchronous Motor Servo System Using Predictive Functional Control and Kalman Filter

  • Wang, Shuang;Zhu, Wenju;Shi, Jian;Ji, Hua;Huang, Surong
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1547-1558
    • /
    • 2015
  • A predictive functional control (PFC) scheme for permanent magnet synchronous motor (PMSM) servo systems is proposed in this paper. The PFC-based method is first introduced in the control design of speed loop. Since the accuracy of the PFC model is influenced by external disturbances and speed detection quantization errors of the low distinguishability optical encoder in servo systems, it is noted that the standard PFC method does not achieve satisfactory results in the presence of strong disturbances. This paper adopted the Kalman filter to observe the load torque, the rotor position and the rotor angular velocity under the condition of a limited precision encoder. The observations are then fed back into PFC model to rebuild it when considering the influence of perturbation. Therefore, an improved PFC method, called the PFC+Kalman filter method, is presented, and a high performance PMSM servo system was achieved. The validity of the proposed controller was tested via experiments. Excellent results were obtained with respect to the speed trajectory tracking, stability, and disturbance rejection.

Capacitor Voltage Boosting and Balancing using a TLBC for Three-Level NPC Inverter Fed RDC-less PMSM Drives

  • Halder, Sukanta;Kotturu, Janardhana;Agarwal, Pramod;Srivastava, Satya Prakash
    • Journal of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.432-444
    • /
    • 2018
  • This paper presents a capacitor voltage balancing topology using a three-level boost converter (TLBC) for a neutral point clamped (NPC) three-level inverter fed surface permanent magnet synchronous motor drive (SPMSM). It enhanced the performance of the drive in terms of its voltage THD and torque pulsation. The main attracting feature of the proposed control is the boosting of the input voltage and at the same time the balancing of the capacitor voltages. This control also reduces the computational complexity. For the purpose of close loop vector control, a software based cost effective resolver to digital converter RDC-less estimation is implemented to calculate the speed and position. The proposed drive is simulated in the MATLAB/SIMULINK environment and an experimental investigation using dSPACE DS1104 validates the proposed drive system at different operating condition.