DOI QR코드

DOI QR Code

Capacitor Voltage Boosting and Balancing using a TLBC for Three-Level NPC Inverter Fed RDC-less PMSM Drives

  • Received : 2017.04.05
  • Accepted : 2017.10.21
  • Published : 2018.03.20

Abstract

This paper presents a capacitor voltage balancing topology using a three-level boost converter (TLBC) for a neutral point clamped (NPC) three-level inverter fed surface permanent magnet synchronous motor drive (SPMSM). It enhanced the performance of the drive in terms of its voltage THD and torque pulsation. The main attracting feature of the proposed control is the boosting of the input voltage and at the same time the balancing of the capacitor voltages. This control also reduces the computational complexity. For the purpose of close loop vector control, a software based cost effective resolver to digital converter RDC-less estimation is implemented to calculate the speed and position. The proposed drive is simulated in the MATLAB/SIMULINK environment and an experimental investigation using dSPACE DS1104 validates the proposed drive system at different operating condition.

Keywords

E1PWAX_2018_v18n2_432_f0001.png 이미지

Fig. 1. Schematic diagram of the proposed PMSM drive system.

E1PWAX_2018_v18n2_432_f0002.png 이미지

Fig. 2. Firing signals of the two switches and inductor current ofthe TLBC.

E1PWAX_2018_v18n2_432_f0003.png 이미지

Fig. 3. Capacitor voltage balancing using the TLBC for the entiretime period T.

E1PWAX_2018_v18n2_432_f0004.png 이미지

Fig. 4. Schematic diagram of the capacitor voltage balancingcircuit of the TLBC circuit.

E1PWAX_2018_v18n2_432_f0005.png 이미지

Fig. 5. Schematic of the RDC-less position estimation.

E1PWAX_2018_v18n2_432_f0006.png 이미지

Fig. 6. Simulation results of capacitor voltages at the loadingcondition without the TLBC circuit.

E1PWAX_2018_v18n2_432_f0007.png 이미지

Fig. 7. Simulation results of capacitor voltages at the loadingcondition with the TLBC circuit.

E1PWAX_2018_v18n2_432_f0008.png 이미지

Fig. 8. Simulation result of the starting response of a PMSMdrive.

E1PWAX_2018_v18n2_432_f0009.png 이미지

Fig. 9. Simulation result of a PMSM drive at load changing.

E1PWAX_2018_v18n2_432_f0010.png 이미지

Fig. 10. Simulation result of a PMSM drive at speed changing.

E1PWAX_2018_v18n2_432_f0011.png 이미지

Fig. 11. Voltage THD of a two-level inverter fed PMSM.

E1PWAX_2018_v18n2_432_f0012.png 이미지

Fig. 12. Voltage THD of a three-level NPC inverter fed PMSM.

E1PWAX_2018_v18n2_432_f0013.png 이미지

Fig. 13. Schematic diagram of a hardware implementation of the proposed drive system.

E1PWAX_2018_v18n2_432_f0014.png 이미지

Fig. 14. Experimental setup.

E1PWAX_2018_v18n2_432_f0015.png 이미지

Fig. 15. Experimental results of the resolver output signal at: (a) 0o shaft rotation, (b) 90o shaft rotation, (c) 180o shaft rotation, (d) 270oshaft rotation, (e) 360o shaft rotation.

E1PWAX_2018_v18n2_432_f0016.png 이미지

Fig. 16. Experimental results of a modulated sine and cosineoutput signal.

E1PWAX_2018_v18n2_432_f0017.png 이미지

Fig. 17. Experimental results of a demodulated sine and cosinesignal.

E1PWAX_2018_v18n2_432_f0018.png 이미지

Fig. 18. Experimental results of demodulated and modulated sinewaves with the position angle of the rotor shaft.

E1PWAX_2018_v18n2_432_f0019.png 이미지

Fig. 19. Experimental waveforms of the inductor current andswitching pulses for a three-level boost converter (pulses to S1and S2 5V/div and inductor current 500mA/div).

E1PWAX_2018_v18n2_432_f0020.png 이미지

Fig. 20. Experimental waveforms of the input voltage, outputcapacitor voltages and inductor current of a three-level boostconverter (capacitor voltage 150V/div, input dc voltage Vdc200V/div, inductor current 250mA/div).

E1PWAX_2018_v18n2_432_f0021.png 이미지

Fig. 21. Experimental result of the capacitor voltage boostingand balancing (capacitor voltage 150V/div, input dc voltage200V/div, capacitor voltage difference 1V/div).

E1PWAX_2018_v18n2_432_f0022.png 이미지

Fig. 22. Experimental result of the starting response of a PMSMdrive (speed 450 rpm/div and stator current 5A/div).

E1PWAX_2018_v18n2_432_f0023.png 이미지

Fig. 23. Experimental result of a PMSM drive at load changing(speed 300rpm/div, stator current 5A/div, capacitor voltagedifference 1V/div).

E1PWAX_2018_v18n2_432_f0024.png 이미지

Fig. 24. Experimental result of a PMSM drive at speed changing(speed 600rpm/div, stator current 5A/div, capacitor voltagedifference 1V/div).

E1PWAX_2018_v18n2_432_f0025.png 이미지

Fig. 25. Efficiency of the proposed PMSM drive.

TABLE I PARAMETERS OF THE DRIVE SYSTEM

E1PWAX_2018_v18n2_432_t0001.png 이미지

References

  1. H. Abu-Rub, J. Holtz, J. Rodriguez, and Ge Baoming, "Medium-voltage multilevel converters-state of the art, challenges, and requirements in industrial applications," IEEE Trans. Ind. Electron., Vol. 57, No. 8, pp. 2581-2596, Aug. 2010. https://doi.org/10.1109/TIE.2010.2043039
  2. J. Rodriguez, S. Bernet, P. K. Steimer, and I. E. Lizama, "A survey on neutral-point-clamped inverters," IEEE Trans. Ind. Electron., Vol. 57, No. 7, pp. 2219-2230, July. 2010. https://doi.org/10.1109/TIE.2009.2032430
  3. J. Rodríguez, J. Lai, and F. Z. Peng, "Multilevel inverters: A survey of topologies, controls, and applications," IEEE Trans. Ind. Electron., Vol. 49, No. 4, pp. 724-738, Aug. 2002. https://doi.org/10.1109/TIE.2002.801052
  4. R. Teichmann and S. Bernet, "A comparison of three-level converters versus two-level converters for low-voltage drives, traction, and utility applications," IEEE Trans. Ind. Appl., Vol. 41, No. 3, pp. 855-865, June. 2005. https://doi.org/10.1109/TIA.2005.847285
  5. C. Xia, H. Shao, Y. Zhang, and X. He, "Adjustable proportional hybrid SVPWM strategy for neutral-pointclamped three-level inverters," IEEE Trans. Ind. Electron., Vol. 60, No. 10, pp. 4234-4242, Oct. 2013. https://doi.org/10.1109/TIE.2012.2213558
  6. P. Chaturvedi, S. Jain, and P. Agarwal, "Carrier-based neutral point potential regulatorwith reduced switching losses for three-level diode-clamped inverter," IEEE Trans. Ind. Electron., Vol. 61, No. 2, pp. 613-624, Feb. 2014. https://doi.org/10.1109/TIE.2013.2254092
  7. A. Choudhury, P. Pillay, and S. S. Williamson, "Comparative analysis between two-level and three-level DC/AC electric vehicle traction inverters using a novel DC-link voltage balancing algorithm," IEEE J. Emerg. Sel. Top. Power Electron., Vol. 2, No. 3, pp. 529-540, Sep. 2014. https://doi.org/10.1109/JESTPE.2014.2310140
  8. A. Anthon, Z. Zhang, M. A. E. Andersen, G. Holmes, B. McGrath, and C. A. Teixeira, "The benefits of SiC MOSFETs in a T-type inverter for grid-tie applications," IEEE Trans. Power Electron., Vol. 32, No. 4, pp. 2808-2821, Apr. 2017. https://doi.org/10.1109/TPEL.2016.2582344
  9. M. Schweizer, T. Friedli, and J. W. Kolar, "Comparative evaluation of advanced three-phase three-level inverter / converter topologies against two-level systems," IEEE Trans. Ind. Electron., Vol. 60, No. 12, pp. 5515-5527, Dec. 2013. https://doi.org/10.1109/TIE.2012.2233698
  10. W. Chen, Y. Zhao, Z. Zhou, Y. Yan, and C. Xia, "Torque ripple reduction in three-level inverter-fed permanent magnet synchronous motor drives by duty-cycle direct torque control using an evaluation table," J. Power Electron., Vol. 17, No. 2, pp. 368-379, Mar. 2017. https://doi.org/10.6113/JPE.2017.17.2.368
  11. N. Celanovic and D. Boroyevich, "A comprehensive study of neutral-point voltage balancing problem in three-level neutral-point-clamped voltage source PWM inverters," IEEE Trans. Power Electron., Vol. 15, No. 2, pp. 242-249, Mar. 2000.
  12. J. Shen, S. Schroder, R. Rosner, and S. E.-B. El-Barbari, "A comprehensive study of neutral-point self-balancing effect in neutral-point-clamped three-level inverters," IEEE Trans. Power Electron., Vol. 26, No. 11, pp. 3084-3095, Nov. 2011. https://doi.org/10.1109/TPEL.2011.2138161
  13. A. Bendre, G. Venkataramanan, D. Rosene, and V. Srinivasan, "Modeling and design of a neutral-point voltage regulator for a three-level diode-clamped inverter usingmultiple-carrier modulation," IEEE Trans. Ind. Electron., Vol. 53, No. 3, pp. 718-726, Jun. 2006. https://doi.org/10.1109/TIE.2006.874424
  14. A. K. Gupta and A. M. Khambadkone, "A simple space vector pwmscheme to operate a three-level NPC inverter at high modulation index including overmodulation region, with neutral point balancing," IEEE Trans. Ind. Appl., Vol. 43, No. 3, pp. 751-760, Jun. 2007. https://doi.org/10.1109/TIA.2007.895766
  15. W. Jiang, S. Du, L. Chang, Y. Zhang, and Q. Zhao, "Hybrid PWM strategy of SVPWM and VSVPWM for NPC three-level voltage-source inverter," IEEE Trans. Power Electron., Vol. 25, No. 10, pp. 2607-2619, Oct. 2010. https://doi.org/10.1109/TPEL.2010.2041254
  16. Z. Pan and F. Z. Peng, "A sinusoidal PWM method with voltage balancing capability for diode-clamped five-level converters," IEEE Trans. Ind. Appl., Vol. 45, No. 3, pp. 1028-1034, Jun. 2009. https://doi.org/10.1109/TIA.2009.2018962
  17. J. Pou, J. Zaragoza, S. Ceballos, M. Saeedifard, and D. Boroyevich, "A carrier-based PWM strategy with zerosequence voltage injection for a three-level neutral-pointclamped converter," IEEE Trans. Power Electron., Vol. 27, No. 2, pp. 642-651, Feb. 2012. https://doi.org/10.1109/TPEL.2010.2050783
  18. R. M. Tallam, R. Naik, and T. A. Nondahl, "A carrier-based PWM scheme for neutral-point voltage balancing in three-level inverters," IEEE Trans. Ind. Appl., Vol. 41, No. 6, pp. 1734-1743, Mar. 2005. https://doi.org/10.1109/TIA.2005.858283
  19. J. Zaragoza, J. Pou, S. Ceballos, E. Robles, C. Jaen, and M. Corbalan, "Voltage-balance compensator for a carrierbased modulation in the neutral-point-clamped converter," IEEE Trans. Ind. Electron., Vol. 56, No. 2, pp. 305-314, Feb. 2009. https://doi.org/10.1109/TIE.2008.2009195
  20. J. Zaragoza, J. Pou, S. Ceballos, E. Robles, P. Ibanez, and J. L. Villate, "A comprehensive study of a hybrid modulation technique for the neutral-point-clamped converter," IEEE Trans. Ind. Electron., Vol. 56, No. 2, pp. 294-304, Feb. 2009. https://doi.org/10.1109/TIE.2008.2005132
  21. H. Zhang, S. J. Finney, A. Massoud, and B. W. Williams, "An SVM algorithm to balance the capacitor voltages of the three-level NPC active power filter," IEEE Trans. POWER Electron., Vol. 23, No. 6, pp. 2694-2702, Nov. 2008. https://doi.org/10.1109/TPEL.2008.2002820
  22. J. Kim, S. Sul, and P. N. Enjeti, "A carrier-based PWM method with optimal switching sequence for amultilevel four-leg voltage-source inverter," IEEE Trans. Ind. Appl., Vol. 44, No. 4, pp. 1239-1248, Aug. 2008. https://doi.org/10.1109/TIA.2008.926201
  23. A. Lewicki, Z. Krzeminski, and H. Abu-Rub, "Spacevector pulsewidth modulation for three-level NPC converter with the neutral point voltage control," IEEE Trans. Ind. Electron., Vol. 58, No. 11, pp. 5076-5086, Nov. 2011. https://doi.org/10.1109/TIE.2011.2119453
  24. A. Choudhury, P. Pillay, and S. S. Williamson, "Modified DC-bus voltage-balancing algorithm based three-level neutral-point-clamped IPMSM drive for electric vehicle applications," IEEE Trans. Ind. Electron., Vol. 63, No. 2, pp. 761-772, Feb. 2016. https://doi.org/10.1109/TIE.2015.2478392
  25. R. Abdullah, N. A. Rahim, S. R. Sheikh Raihan, and A. Z. Ahmad, "Five-level diode-clamped inverterwith three-level boost converter," IEEE Trans. Ind. Electron., Vol. 61, No. 10, pp. 5155-5163, Oct. 2014. https://doi.org/10.1109/TIE.2013.2297315
  26. H. Chen and J. Liao, "Design and implementation of sensorless capacitor voltage balancing control for threelevel boosting PFC," IEEE Trans. Power Electron., Vol. 29, No. 7, pp. 3808-3817, Jul. 2014. https://doi.org/10.1109/TPEL.2013.2279718
  27. R. Krishna, D. E. Soman, S. K. Kottayil, and M. Leijon, "Pulse delay control for capacitor voltage balancing in a three-level boost neutral point clamped inverter," IET Power Electron., Vol. 8, No. 2, pp. 268-277, Feb. 2015. https://doi.org/10.1049/iet-pel.2014.0103
  28. J. Kwon, B.-H. Kwon, and K.-H. Nam, "Three-phase photovoltaic systemwith three-level boosting MPPT control," IEEE Trans. Power Electron., Vol. 23, No. 5, pp. 2319-2327, Sep. 2008. https://doi.org/10.1109/TPEL.2008.2001906
  29. M. Sahoo and S. Keerthipati, "A three-level LC-switchingbased voltage boost NPC inverter," IEEE Trans. Ind. Electron., Vol. 64, No. 4, pp. 2876-2883, Apr. 2017. https://doi.org/10.1109/TIE.2016.2636120
  30. J. Chen, S. Hou, T. Sun, F. Deng, and Z. Chen, "A new interleaved double-input three-level boost converter," J. Power Electron., Vol. 16, No. 3, pp. 925-935, May 2016. https://doi.org/10.6113/JPE.2016.16.3.925
  31. P. Alemi, Y. Jeung, and D.-C. Lee, "DC-link capacitance minimization in T-type three-level AC/DC/AC PWM converters," IEEE Trans. Ind. Electron., Vol. 62, No. 3, pp. 1382-1391, Mar. 2015. https://doi.org/10.1109/TIE.2014.2345354
  32. C. S. Postiglione, D. A. F. Collier, B. S. Dupczak, M. L. Heldwein, and A. J. Perin, "Propulsion system for an all electric passenger boat employing permanent magnet synchronous motors and modern power electronics," Electr. Syst. Aircraft, Railw. Sh. Propulsion, ESARS, pp. 1-6, 2012.
  33. K. Sun, Y. Lu, Y. Xing, and L. Huang, "Modeling and analysis of leakage currents in PWM-VSI-fed PMSM drives for air-conditioners with high accuracy and within a wide frequency range," J. Power Electron., Vol. 16, No. 3, pp. 970-981, May 2016. https://doi.org/10.6113/JPE.2016.16.3.970
  34. J.-K. Seok, J.-K. Lee, and D.-C. Lee, "Sensorless speed control of nonsalient permanent-magnet synchronous motor using rotor-position-tracking PI controller," IEEE Trans. Ind. Electron., Vol. 53, No. 2, pp. 399-405, Apr. 2006. https://doi.org/10.1109/TIE.2006.870728
  35. Y. Kang, H. Jeong, K. Lee, D. Lee, and J. Kim, "Simple estimation scheme for initial rotor position and inductances for effective MTPA-operation in wind-power systems using an IPMSM," J. Power Electron., Vol. 10, No. 4, pp. 396-404, Jul. 2010. https://doi.org/10.6113/JPE.2010.10.4.396
  36. M. Benammar, L. Ben-Brahim, and M. A. Alhamadi, "A novel resolver-to-360 linearized converter," IEEE Sensors J., Vol. 4, No. 1, pp. 96-101, Feb. 2004. https://doi.org/10.1109/JSEN.2003.820317
  37. C. Attaianese and G. Tomasso, "Position measurement in industrial drives by means of low-cost resolver-to-digital converter," IEEE Trans. Instrum. Meas., Vol. 56, No. 6, pp. 2155-2159, Dec. 2007. https://doi.org/10.1109/TIM.2007.908120
  38. S. Sarma, V. K. Agrawal, and S. Udupa, "Software-based resolver-to-digital conversion using a DSP," IEEE Trans. Ind. Electron., Vol. 55, No. 1, pp. 371-379, Jan. 2008. https://doi.org/10.1109/TIE.2007.903952
  39. C. Hou, Y. Chiang, and C. Lo, "DSP-based resolver-todigital conversion system designed in time domain," IET Power Electron., Vol. 7, No. 9, pp. 2227-2232, Sep. 2014. https://doi.org/10.1049/iet-pel.2013.0502
  40. R. Krishnan, Electric Motor Drives Modeling Analysis and Control, Prentice Hall, 2001.