• Title/Summary/Keyword: position and orientation

Search Result 739, Processing Time 0.031 seconds

The Emergence and Development of the Lamaist Gateway of $Lokap\bar{a}las$ during the $Jos\breve{o}n$ Dynasty - Some problems on the orientation of the Gateway of Lokapala and on the allocation of the Four Guardian Kings - (조선시대 라마계 천왕문의 수용 및 전개에 대하여 -천왕문의 배치와 사천왕 배열에 관한 문제-)

  • Yi, Dae-Am
    • Journal of architectural history
    • /
    • v.16 no.6
    • /
    • pp.47-66
    • /
    • 2007
  • $Lokap{\bar{a}}las$ are understood as the deities of four directions in Buddhism: $Dhrtar{\bar{a}}stra$ in the East, $Vir{\bar{u}}dhaka$ in the South, $Vir{\bar{u}}p{\bar{a}}ksa$ in the West and $Vai{\acute{s}}ravana$ in the North respectively. Their common name is, therefore, called as the "Four Guardian Kings", whose function is to prevent demonic forces from entering into its sacred world. Although the position of $Lokap{\bar{a}}las$ is to the lowest level in the hierarchy of the minor deities in Buddhism, the cult of $Lokap{\bar{a}}las$ was widely spread and prominent in the countries of Northern Buddhism. It played a significant role in terms of the state-protecting Buddhism, on behalf of it's esoteric and magic power. More than 20 Gateways of the $Lokap{\bar{a}}las$ and $Lokap{\bar{a}}la$ statues were still well preserved in Korea, and they were believed to be constructed after the Japanese attack in 1592. After war, monks had concentrated on restoring ruined temples and building many new Gateways of the Four Guardian Kings over the Korean peninsular. Under such circumstances, even though the $Lokap{\bar{a}}las$ played a significant role as the subject of cult in Korean Buddhism. they might have a small chance to be taught traditional Lama iconography exactly. The purpose of this essay is to examine the relation of orientation of the Gate way of $Lokap{\bar{a}}las$ and allocation of each Kings inside the gate.

  • PDF

Multi-sensor Intelligent Robot (멀티센서 스마트 로보트)

  • Jang, Jong-Hwan;Kim, Yong-Ho
    • The Journal of Natural Sciences
    • /
    • v.5 no.1
    • /
    • pp.87-93
    • /
    • 1992
  • A robotically assisted field material handling system designed for loading and unloading of a planar pallet with a forklift in unstructured field environment is presented. The system uses combined acoustic/visual sensing data to define the position/orientation of the pallet and to determine the specific locations of the two slots of the pallet, so that the forklift can move close to the slot and engage it for transport. In order to reduce the complexity of the material handling operation, we have developed a method based on the integration of 2-D range data of Poraloid ultrasonic sensor along with 2-D visual data of an optical camera. Data obtained from the two separate sources complements each other and is used in an efficient algorithm to control this robotically assisted field material handling system . Range data obtained from two linear scannings is used to determine the pan and tilt angles of a pallet using least mean square method. Then 2-D visual data is used to determine the swing angle and engagement location of a pallet by using edge detection and Hough transform techniques. The limitations of the pan and tilt orientation to be determined arc discussed. The system developed is evaluated through the hardware and software implementation. The experimental results are presented.

  • PDF

Sampling-based Control of SAR System Mounted on A Simple Manipulator (간단한 기구부와 결합한 공간증강현실 시스템의 샘플 기반 제어 방법)

  • Lee, Ahyun;Lee, Joo-Ho;Lee, Joo-Haeng
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.4
    • /
    • pp.356-367
    • /
    • 2014
  • A robotic sapatial augmented reality (RSAR) system, which combines robotic components with projector-based AR technique, is unique in its ability to expand the user interaction area by dynamically changing the position and orientation of a projector-camera unit (PCU). For a moving PCU mounted on a conventional robotic device, we can compute its extrinsic parameters using a robot kinematics method assuming a link and joint geometry is available. In a RSAR system based on user-created robot (UCR), however, it is difficult to calibrate or measure the geometric configuration, which limits to apply a conventional kinematics method. In this paper, we propose a data-driven kinematics control method for a UCR-based RSAR system. The proposed method utilized a pre-sampled data set of camera calibration acquired at sufficient instances of kinematics configurations in fixed joint domains. Then, the sampled set is compactly represented as a set of B-spline surfaces. The proposed method have merits in two folds. First, it does not require any kinematics model such as a link length or joint orientation. Secondly, the computation is simple since it just evaluates a several polynomials rather than relying on Jacobian computation. We describe the proposed method and demonstrates the results for an experimental RSAR system with a PCU on a simple pan-tilt arm.

Effect of Deposition Temperature and Oxygen on the Growth of $RuO_2$ Thin Films Deposited by Metalorganic Chemical Vapor Deposition (금속유기 화학증착법으로 증착시킨 $RuO_2$박막의 성장에 미치는 증착온도와 산소의 영향)

  • 신웅철;윤순길
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.3
    • /
    • pp.241-248
    • /
    • 1997
  • RuO2 thin films were deposited on SiO2(1000$\AA$)/Si and MgO(100) single crystal substrates at low tem-peratures by hot-wall metalorganic chemical vapor deposition(MOCVD), and effects of deposition paramet-ers on the properties of the thin films were investigated. RuO2 single phase was obtained at lower de-position temperature of 25$0^{\circ}C$. RuO2 thin films deposited onto SiO2(1000$\AA$)/Si substrates showed a random orientation, and RuO2 films onto MgO(100) single crystals showed the (hk0) orientation. The crystallinity and resistivity of RuO2 thin films increased and decreased with increasing deposition temperature, respec-tively. The resistivity of RuO2 thin films decreased with decreasing the flow rate. The resistivity of the 2600$\AA$-thick RuO2 thin films deposited with O2 flow rate of 50 sccm at 35$0^{\circ}C$ was 52.7$\mu$$\Omega$-cm, and they could be applicable to bottom electrodes of high dielectric materals.

  • PDF

Object Localization in Sensor Network using the Infrared Light based Sector and Inertial Measurement Unit Information (적외선기반 구역정보와 관성항법장치정보를 이용한 센서 네트워크 환경에서의 물체위치 추정)

  • Lee, Min-Young;Lee, Soo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.12
    • /
    • pp.1167-1175
    • /
    • 2010
  • This paper presents the use of the inertial measurement unit information and the infrared sector information for getting the position of an object. Travel distance is usually calculated from the double integration of the accelerometer output with respect to time; however, the accumulated errors due to the drift are inevitable. The orientation change of the accelerometer also causes error because the gravity is added to the measured acceleration. Unless three axis orientations are completely identified, the accelerometer alone does not provide correct acceleration for estimating the travel distance. We propose a way of minimizing the error due to the change of the orientation. In order to reduce the accumulated error, the infrared sector information is fused with the inertial measurement unit information. Infrared sector information has highly deterministic characteristics, different from RFID. By putting several infrared emitters on the ceiling, the floor is divided into many different sectors and each sector is set to have a unique identification. Infrared light based sector information tells the sector the object is in, but the size of the uncertainty is too large if only the sector information is used. This paper presents an algorithm which combines both the inertial measurement unit information and the sector information so that the size of the uncertainty becomes smaller. It also introduces a framework which can be used with other types of the artificial landmarks. The characteristics of the developed infrared light based sector and the proposed algorithm are verified from the experiments.

Optimal 3-D Packing using 2-D Slice Data for Multiple Parts Layout in Rapid Prototyping (신속시작작업에서 2차원 단면데이터를 이용한 3차원 물체의 최적자동배치를 위한 알고리즘의 개발)

  • 허정훈;이건우;안재홍
    • Korean Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.195-210
    • /
    • 1997
  • In Rapid Prototyping process, the time required to build multiple prototype parts can be reduced by packing several parts optimally in a work volume. Interactive arrangement of the multiple parts is a tedious process and does not guarantee the optimal placement of all the parts. In this case, packing is a kind of 3-D nesting problem because parts are represented by STL files with 3-D information. 3-D nesting is well known to be a problem requiring an intense computation and an efficient algorithm to solve the problem is still under investigation. This paper proposes that packing 3-D parts can be simplified into a 2-D irregular polygon nesting problem by using the characteristic of rapid prototyping process that the process uses 2-dimensional slicing data of the parts and that slice of the STL parts are composed of polygons. Our algorithm uses no-fit-polygon (NFP) to place each slice without overlapping other slices in the same z-level. The allowable position of one part at a fixed orientation for given parts already packed can be determined by obtaining the union of all NFP's that are obtained from each slice of the part. Genetic algorithm is used to determine the order of parts to be placed and orientations of each part for the optimal packing. Optimal orientation of a part is determined while rotating it about the axis normal to the slice by finite angles and flipping upside down. This algorithm can be applied to any rapid prototyping process that does not need support structures.

  • PDF

Analysis of Block Geometry of UltraCamX (UltraCamX 카메라의 블록기하 분석)

  • Lee, Seung Bok;Lee, Jae One;Cha, Sung Yeoul;Yun, Bu Yeol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.2
    • /
    • pp.45-51
    • /
    • 2013
  • Today, people who live in sea of information are strongly appearing desire about quicker and more accurate information. For a long time people wanted to know information about place that I am and where I must go out, and there are various methods to have a keen desire for position information. Equipment that is using most among the method is digital camera. In this study, the accuracy of external orientation, GCP and check point depending on array of GCP and regional feature are analyzed after AT(aerial triangulation) with UltraCamX in three selected study area with specific feature. As analysis result, we could get to know that area with a mountainous district rapidly decreased accuracy of external orientation according as number of GCP decreases, and area with high buildings became low in vertical accuracy of checkpoint. This study has performed the analysis of regional factors in aerial triangulation accuracy.

Development of Building Monitoring Techniques Using Augmented Reality (증강현실을 이용한 건물 모니터링 기법 개발)

  • Jeong, Seong-Su;Heo, Joon;Woo, Sun-Kyu
    • Korean Journal of Construction Engineering and Management
    • /
    • v.10 no.6
    • /
    • pp.3-12
    • /
    • 2009
  • In order to effectively distribute the resources, it is very critical to understand the status or progress of construction site quickly and accurately. Augmented Reality (AR) can provide this situation with information which is convenient and intuitive. Conventional implementation of AR in outdoor or construction site condition requires additional sensors or markers to track the position and direction of camera. This research is aimed to develop the technologies which can be utilized in gathering the information of constructing or constructed buildings and structures. The AR technique that does not require additional devices except for the camera was implemented to simplify the system and improve utility in inaccessible area. In order to do so, the position of camera's perspective center and direction of camera was estimated using exterior orientation techniques. And 3D drawing model of building was projected and overlapped using this information. The result shows that by using this technique, the virtual drawing image was registered on real image with few pixels of error. The technique and procedure introduced in this paper simplifies the hardware organization of AR system that makes it easier for the AR technology to be utilized with ease in construction site. Moreover, this technique will help the AR to be utilized even in inaccessible areas. In addition to this, it is expected that combining this technique and 4D CAD technology can provide the project manager with more intuitive and comprehensive information that simplifies the monitoring work of construction progress and planning.

Improving Matching Performance of SURF Using Color and Relative Position (위치와 색상 정보를 사용한 SURF 정합 성능 향상 기법)

  • Lee, KyungSeung;Kim, Daehoon;Rho, Seungmin;Hwang, Eenjun
    • Journal of Advanced Navigation Technology
    • /
    • v.16 no.2
    • /
    • pp.394-400
    • /
    • 2012
  • SURF is a robust local invariant feature descriptor and has been used in many applications such as object recognition. Even though this algorithm has similar matching accuracy compared to the SIFT, which is another popular feature extraction algorithm, it has advantage in matching time. However, these descriptors do not consider relative location information of extracted interesting points to guarantee rotation invariance. Also, since they use gray image of original color image, they do not use the color information of images, either. In this paper, we propose a method for improving matching performance of SURF descriptor using the color and relative location information of interest points. The location information is built from the angles between the line connecting the centers of interest points and the orientation line constructed for the center of each interest points. For the color information, color histogram is constructed for the region of each interest point. We show the performance of our scheme through experiments.

Dielectric and Pyroelectric Prooperties of (Ba,Sr)TiO$_3$ Thin Films Grown by RF Magntron Sputtering (RF 마그네트론 스퍼터링 방법으로 제조한 (Ba,Sr)TiO$_3$ 박막의 유전 및 초전특성)

  • 박재석;김진섭;이정희;이용현;한석룡;이재신
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.4
    • /
    • pp.403-409
    • /
    • 1999
  • The dielectric and pyroelectric properties of $Ba_{0.66}$$Sr_{0.38}$$TiO_{3}$(BST) thin films growtn on Pt/Ti/NON/Si us-ing RF magnetron sputtering have been investigated. With increasing the substrate temperature during de-position of the BST film in the range of 300-$600^{\circ}C$ the dielectric and pyroelectric constants of the film were increased due to improved crystallinity of the film. In addition the dependence of the microstructural and electrical properties of BST films onthe deposition temperature of the bottom Pt electrode was studied. The preferred orientation of the BST films as well as the microstructure of the Pt film was greatly in-fluenced by the deposition temperature of the bottom Pt electrode was studied. The preferred orientation of the BSt films as well as the microstructure of the Pt film was greatly in-fluenced by the deposition temperature of the bottom Pt electrodes. and thus so were the pyrolelectric pro-perties of the BST film. The highest value of pyroelectric coefficient at room temperature obtained in this work was $nCcm^{-2}K^{-1}$ which is much higher than those previously reported on other perovskite fer-roelectric thin films.

  • PDF