• Title/Summary/Keyword: position and direction of load

Search Result 64, Processing Time 0.023 seconds

Finite Element Stress Analysis of Implant Prosthesis of Internal Connection System According to Position and Direction of Load (임플랜트-지대주의 내측연결 시스템에서 하중의 위치 및 경사에 따른 임플랜트 보철의 유한요소 응력분석)

  • Jang, Jong-Seok;Jeong, Yong-Tae;Chung, Chae-Heon
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.21 no.1
    • /
    • pp.1-14
    • /
    • 2005
  • The purpose of this study was to assess the loading distributing characteristics of implant prosthesis of internal connection system(ITI system) according to position and direction of load, under vertical and inclined loading using finite element analysis (FEA). The finite element model of a synOcta implant and a solid abutment with $8^{\circ}$ internal conical joint used by the ITI implant was constructed. The gold crown for mandibular first molar was made on solid abutment. Each three-dimensional finite element model was created with the physical properties of the implant and surrounding bone. This study simulated loads of 200N at the central fossa in a vertical direction (loading condition A), 200N at the outside point of the central fossa with resin filling into screw hole in a vertical direction (loading condition B), 200N at the centric cusp in a $15^{\circ}$ inward oblique direction (loading condition C), 200N at the in a $30^{\circ}$ inward oblique direction (loading condition D) or 200N at the centric cusp in a $30^{\circ}$ outward oblique direction (loading condition E) individually. Von Mises stresses were recorded and compared in the supporting bone, fixture, and abutment. The following results have been made based on this study: 1. Stresses were concentrated mainly at the ridge crest around implant under both vertical and oblique loading but stresses in the cancellous bone were low under both vertical and oblique loading. 2. Bending moments resulting from non-axial loading of dental implants caused stress concentrations on cortical bone. The magnitude of the stress was greater with the oblique loading than with the vertical loading. 3. An offset of the vertical occlusal force in the buccolingual direction relative to the implant axis gave rise to increased bending of the implant. So, the relative positions of the resultant line of force from occlusal contact and the center of rotation seems to be more important. 4. In this internal conical joint, vertical and oblique loads were resisted mainly by the implant-abutment joint at the screw level and by the implant collar. Conclusively, It seems to be more important that how long the distance is from center of rotation of the implant itself to the resultant line of force from occlusal contact (leverage). In a morse taper implant, vertical and oblique loads are resisted mainly by the implant-abutment joint at the screw level and by the implant collar. This type of implant-abutment connection can also distribute forces deeper within the implant and shield the retention screw from excessive loading. Lateral forces are transmitted directly to the walls of the implant and the implant abutment mating bevels, providing greater resistance to interface opening.

Monotonic Loading Tests on Seismic Stiffeners for Vertical Hangers (수직 행거 내진설계용 스티프너의 단조 압축 실험)

  • Chang-Soo Oh;Ha-Sung Kong
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.2
    • /
    • pp.187-192
    • /
    • 2023
  • In piping systems, trapeze hangers are subjected to vertical and horizontal seismic loads and stiffeners are used. In this study, monotonic compression tests were conducted with the removable stiffeners using three variables: stiffener clamp fixing position, section length, and installation direction. The maximum load reinforced with stiffeners could withstand a compressive load of 11kN by applying a safety factor of 10%. It could be estimated that the fixing clamp spacing or the length of shape and load had a proportional relationship. And the stiffener must be fixed in the direction of the strong axis on hinge parts. Also the stiffener buckiling load design proposes to use a method of calculate the flexural buckling compressive strength of and unreinforced full threaded bolt.

TIME DELAYED CONTROLLER를 이용한 유압 시스템의 위치 제어

  • 진성무;현장환;이정오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.10a
    • /
    • pp.204-208
    • /
    • 2001
  • Position control of the electro-hydraulic servo indexing system in a flexible forging machine was investigated Flexible forging machine forges an axial type workpiece in the radial direction as well as in the axial direction. The role of the indexing system is to rotate a workpiece fast and accurately to a desired position for continuous shaping. Since the inertia of a workpiece changes during each forging step, a control technique which is robust to inertia variation should be adopted to the position control of the workpiece. In this study, time delayed control technique is applied to the servo system. Time delayed control method does not depend on estimation of specific parameters. Rather, it depends on the direct estimation of a function representing the effect of uncertainties. Direct estimation is accomplished using time delay and the gathered information is used to cancel the unknown dynamics is accomplished using disturbances simultaneously. Experimental result show that the time delayed controller is robust to inertia variation of the load, and satisfactory performance on the sposition accuracy is obtained compared to the contentional feedback control.

An Experimental Study for the Qualitative Effect of Carrier Pin Hole Position Error on Planet Load Sharing of Wind Turbine Three-point Suspension Gearbox (풍력발전기용 3점 지지 기어박스에서 캐리어 핀홀 위치 오차가 유성기어의 하중분할에 미치는 정성적 영향에 관한 실험적 연구)

  • Nam, Ju-Seok;Han, Jeong-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.25 no.2
    • /
    • pp.97-104
    • /
    • 2016
  • In this study, the qualitative effects of the positional error of carrier pin holes on the planet load sharing characteristics of the three-point suspension gearbox of wind turbines were investigated experimentally. A 35-kW gearbox comprising two planetary gear stages and a parallel gear stage and size one-fourth of that of a 2-MW three-point suspension gearbox was used as the test gearbox. The strain gauges attached to the ring gear teeth of the input planetary gear stage were used for the purpose of this study. The applied loading conditions were 50%, 75%, and 100% of the rated torque, and the mesh load factor was used as the load sharing index. The experimental results indicated that both the magnitude and direction of the positional error of pin holes had a significant effect on the planet load sharing characteristics of the three-point suspension gearbox. In addition, an increase in the applied torque results in uniform load sharing.

Effect of External Load on Shoulder Joint Active Relocation Using 3D Motion Capture System: A Pilot Study (외부 하중이 어깨관절의 능동적 재위치 검사 결과에 미치는 영향: 3차원 동작 분석 시스템을 이용한 예비연구)

  • Hwang, Jisun;Hwang, Seonhong
    • Physical Therapy Korea
    • /
    • v.25 no.2
    • /
    • pp.71-77
    • /
    • 2018
  • Background: There are insufficient objective or quantitative evidence for the better intervention to improve proprioception particularly for the application of external load. There are conflicting opinions whether the external load is effective for proprioception improvement or not. Objects: The purpose of this study was to investigate effects of external load on proprioception of shoulder joint quantitatively using 3D motion capture system. Methods: Nine healthy adults joined for this study. They were asked to perform scapular plane abduction motion with attaching reflective markers on the trunk and upper limb. The 3D positions of finger marker, while they performed the same task with and without external load, were recorded and analyzed. Results: All participants showed decreased variable errors in the vertical direction when the external load was applied (p<.02). Even though other directions (y, z) and absolute errors increased, they did not have statistical significances. Conclusion: Based on this study results, the external load application would be effective for shoulder joint position sense improvement.

A Study on the Optical Emission Spectroscopy of the RF Inductive Plasma Process (RF 유도형 플라즈마 프로세스에 대한 분광학적 연구)

  • Jang, Mun-Gug;Han, Sang-Bo;Park, Sang-Hyun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.103-112
    • /
    • 2011
  • This paper is tried to analysis the optical emission spectroscopy related to the position of inductive load coil and flow rates of methane and oxygen in the RF inductive plasma process. According to the position of load coil, peak of $H_{\alpha}$, $H_{\beta}$, and CH were appeared strongly at the middle position of the coil and it decreased both direction. The electron temperature was approximately 0.9[eV] at that position. Emission intensities of $H_{\alpha}$, $H_{\beta}$, and CH increased linearly by increasing input power. In addition, intensities of $H_{\alpha}$ and $H_{\beta}$ increased by increasing the flow rate of oxygen. It might be ascribed that the oxygen species were bonded with $C_nH_m$ by suppressing the combination with hydrogen atoms. Consequently, the optimal position of the inductive coil is decided to the intermediate position between 4th and 5th turns, the wanted carbon thin-film is possible to deposit by controlling flow rates of methane and oxygen.

리엔트런트 패널의 전면볼록성에 대한 정량적 해석

  • Heo, Jeong-Min;Lee, Ji-Hwan
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.228-233
    • /
    • 2016
  • Auxetic material is a material which has negative Poisson's ratio(NPR). Auxetic material shows some distinctive property like high energy absorbing property and high shear modulus. Among these, synclastic curvature is very interesting characteristic. When synclastic-curvature-material bends, it changes its shape like dome, contrary to non-auxetic material which changes its shape like saddle(anticlastic). This distinctive property could make it easy to manufacture curved structure like nose cone or wing panel in aerospace engineering. In this study, we studied a quantitative analysis about synclastic curvature of re-entrant panel with finite element model. We suggested a concept 'Degree of Synclasticity(DOS)', which means a ratio of curvature of load-direction and load-orthogonal direction. We studied the variation of DOS with two factor, unit cell inner angle(${\theta}$) and load position angle(${\phi}$). DOS decreases as ${\theta}$ increases because the unit cell goes out of auxetic-shape. As ${\phi}$ varies, DOS changes in a large range. So proper optimization of ${\phi}$ would be needed for application.

  • PDF

Effects of Trunk Twist on Postural Sway During Manually Handling Flat Ties (플렛타이 인력물자취급서 몸통 비틀기에 따른 신체자세 동요에 대한 연구)

  • Kim, Sung-Won;Park, Sung-Ha
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.33 no.4
    • /
    • pp.38-44
    • /
    • 2010
  • We investigated the effects of trunk twist on postural stability during manually handling flat ties. Ten male subjects participated in this study. While handling 5kgf and 10kgf bundles of flat ties respectively, their centers of pressure (COPs) were measured under two levels of body position (twisted and fixed), two levels of direction (left and right), and three levels of object position ($30^{\circ}$, $45^{\circ}$, and $60^{\circ}$). Subjects' postural stability was quantified by calculating the sway length. Results showed that the effect of different object position was significant on postural sway length in subject's medio-lateral axis. Post-hoc multiple comparions revealed that, under the 5kgf load condition, the sway length was increased significantly as the object position increased to $45^{\circ}$. Under the 10kgf load condition, however, the sway length was increased significantly at the object position of $60^{\circ}$. Actual or potential applications of this research include guidelines for the design of working posture evaluation techniques.

Sensorless Control Algorithm of a Surface Mounted PM Synchronous Motor Under Naturally Rotating by Load (외부부하에 의해 회전중인 표면부착형 영구자석동기전동기의 센서리스 제어 알고리즘)

  • Lee, Han-Sol;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.23 no.1
    • /
    • pp.16-23
    • /
    • 2018
  • PM synchronous motor may be rotated to an arbitrary direction and speed by outside wind under natural condition in cases where the fan is applied outside, such as in vehicle radiators and outdoor air-conditioners. Sensorless controls that cannot detect rotor position requires additional sensorless control algorithm because a rotor is rotated by an external load. In this study, the sensorless control of a PM synchronous motor under naturally rotating condition is proposed. The natural rotation conditions are classified as forward high-speed rotation, reverse high-speed rotation, and low-speed rotation. Experiment results verify the performance of the sensorless control, including the rotor speed and position detection at natural rotation mode and switch to the closed-loop sensorless control.

A Study on the Dynamic Analysis of Recliner Gear for Vehicle Power Seats (차량용 시트 리클라이너 기어의 동적 해석)

  • Kim, Sung-Yuk;Lee, Jung-Bin;Kim, Key-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.6
    • /
    • pp.15-20
    • /
    • 2017
  • This study analyzed the load change of the gear generated by the operation of the vehicle recliner through Finite Element Analysis. The basic model of the recliner used was a commercial product, and the effect of the seat frame was excluded. The load conditions applied to the recliner were set considering gravity, the mass of the seat's back frame, and the weight of a person. The operating mode was set to move the seat back from the vertical to the reclined position. As a result, it was found that the tooth bending amount of the gear rim and wheel increased from the cam rotation angle of 450 degrees, and a change in the contact ratio occurred. Furthermore, excessive torque fluctuations occurred in the ranges of 390 to 450 and 750 to 710 degrees. It was found that this occurred in the region of about 30 degrees before and after the point where the x-axis direction load is larger than the y-direction load. From this torque fluctuation it was determined to likely to cause chattering noise.