• Title/Summary/Keyword: port handling

Search Result 440, Processing Time 0.031 seconds

A Study on Cargo Handling Accident Analysis and Prevention for irregular employee in Incheon Port (인천항 비상용 근로자의 재해분석 및 예방대책에 관한 연구)

  • Nam, Young-Woo;Jho, Yong-Chul;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.11 no.2
    • /
    • pp.1-8
    • /
    • 2009
  • The port, differently from general working place, is a closed area to execute security, customs, and quarantine procedures. The loading and unloading is being done differently by cargoes, ships, berths, and equipments. To load and unload a lot of equipments and different types of labor are required, in which work flow is very complicated. As above mentioned the port is very unique and deteriorated working place including danger. Now frequency of cargo handling accidents in port is highest for the second time among all industries. The purpose of this study is to propose ways to analyze and establish the preventive measure for cargo handling accidents in port. We have collected 45 accidents happened at Incheon Port during the period from 2007 to 2009. And the result of analysis, we proposed the new safety management system and safety education to reduce cargo handling accidents and to promote the quality of cargo handling in Incheon Port. Within the framework of effective safety management of cargo handling in port, this study will help to revise and establish system, education, and standard working manual with respect to the port loading and unloading system.

A Study on Determining the Optimal Amount of Labor Force for Cargo Handling in the Harbor (항만 하역 노동력의 최적 규모 결정에 관하여)

  • Lee, Cheol-Yeong;Jang, Yeong-Jun
    • Journal of Korean Port Research
    • /
    • v.3 no.1
    • /
    • pp.35-55
    • /
    • 1989
  • Today, about 99% of total import and export cargo in Korea is being transported through the port. The general trends of cargo handling show increases in capacity and speed, In order to cope with these trends, it is not only required to raise the efficiencies of port operation and function but also necessary to decide the optimal amount of the skilled labor force for cargo handling in the port. Cargo handling in the port is basically relied on the cargo handling facilities. Therefore, it is very important to reserve the amount of labor force for cargo handling system has been developed up to a certain level but the personnel management system which is the superior structure has not been followed well. In this study, therefore, we show a method to determine the required amount of labor force for cargo handling considering the amount of cargo and type of cargo handling work per each cargo, and the optimal amount labor force in cope with the fluctuation of the basic cargo handling labor force with respect to the time of in and out cargo flow in the viewpoint of minimizing the expences due to reservation of extra labor force than needed and firing employment of labor force using the Dynamic Programming. The derived algorithm is introduced into the computer simulation for Pusan port with the analyzed real data such as amount of cargo handling in the port with respect to working hour, cargo capacity, working step, the ratio of cargo handling facility and actual number of workers and we estimated the required labor force. As a result of analysis the labor force of Pusan port showed the over-employment such as maximum 21.4%, minimum 8.2% when we assumed that the averages of actual working hours and days were 8 hours in a day and 20 day in a month.

  • PDF

On the Cost Analysis of Container Physical Distribution System in Pusan Port (부산항 컨테이너 물류 시스템의 비용분석에 관하여)

  • 박창호;이철영
    • Journal of the Korean Institute of Navigation
    • /
    • v.15 no.3
    • /
    • pp.13-24
    • /
    • 1991
  • This paper aims to determining the optimal capacity of Pusan port in view point of Container Physical Distribution cost. It has been established a coast model of the container physical distribution system in Pusan port is composed of 4 sub-systems and in-land transport system. Cargo handling system, transfer & storage system and in-land transport system, and analyzed the cost model of the system. From this analysis, we found that the system had 7 routes including in-land transport by rail or road and coastal transport by feeder ship between Pusan port and cargo owner's door. Though railway transport cost was relatively cheap, but, it was limited to choose railway transport routes due to the introducing of transport cargo allocation practice caused by shortage of railway transport capacity. The physical distribution ost for total import & export container through Pusan port was composed of 4.47% in port entring cost, 12.98% in cargo handling cost, 7.44% in transfer & storage cost and 75.11% in in-land transport cost. Investigation in case of BCTOC verified the results as follows. 1) The optimal level of one time cargo handling was verified 236VAN (377TEU) and annual optimal handling capacity was calculated in 516, 840VAN(826, 944TEU) where berth occupancy is $\rho$=0.6 when regardless of port congestion cost, 2) The optimal level of one time cargo handling was verified 252VAN (403TEU) and annual optimal handling capacity was calculated in 502, 110VAN (803, 376TEU) where berth occupancy is $\rho$=0.58 when considering of port congestion cost.

  • PDF

A Study on Analysis and Prevention for Cargo Handling Accidents in Incheon Port (인천항 항만하역 재해분석 및 예방대책에 관한 연구)

  • Nam, Young-Woo;Kim, Young-Min;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.8 no.3
    • /
    • pp.27-36
    • /
    • 2006
  • The port, differently from general working place, is a closed area to execute security, customs, and quarantine procedures. The loading and unloading is being done differently by cargoes, ships, berths, and equipments. To load and unload a lot of equipments and different types of labor are required, in which work flow is very complicated. As above mentioned the port is very unique and deteriorated working place including danger. The purpose of this thesis is to propose ways to analyze and establish the preventive measure for cargo handling accidents in port. We have collected 923 accidents happened at Incheon Port during the period from 1994 to 2003. And to analyze and establish the preventive measure we have employed an advanced 6sigma DMAIC technology presently in spotlight as the best tool for management innovation. For the purpose of effective safety management of cargo handling in port, this thesis will help to revise and establish the law, system, standard, and standard working manual with respect to the port loading and unloading system. Now frequency of cargo handling accidents in port is highest for the second time among all industries, so we proposed the new safety management system to substitute port safety committee and to take full charge of safety in Ministry of Maritime Affairs and Fisheries.

Estimation of the Handing Capacity of Container Terminals Using Simulation Techniques (시뮬레이션 기법을 이용한 컨테이너 터미널 하역 능력 추정)

  • 장성용
    • Journal of the Korea Society for Simulation
    • /
    • v.5 no.1
    • /
    • pp.53-66
    • /
    • 1996
  • Container handling facilities in Korean ports have increased rapidly according to Korean industrialization and the worldwide containerization. Over 98% of total containers handles in Korean ports are handled in Puan ports. This paper presents the estimation method of annual container handling capacity of container terminals by the computer simulation models. Simulation models are developed utilizing SIMAN IV simulation package. Annual handling capacity of real container terminals such as BCTOC and PECT was estimated by the proposed simulation models. Also, Annual handling capaicty of planned or expected terminals in Puan port was estimated. The comparisons between container forecast demand and estimated handling capacity of Pusan port from 1996 through 2001 were made. It showed that Pusan port will have over two million TEU handling capacity shortage during that period and will face enormous port congestion. Lastly, mid term and long-term capacity expansion plansof container terminals in korean ports were discussed.

  • PDF

A Study of Dynamic Forecast on Port Container Handling Capacity (항만 컨테이너 처리능력의 통계적 예측에 관한 연구)

  • Feng, Zhan-Qing;Lee, Su-Ho
    • Journal of Navigation and Port Research
    • /
    • v.26 no.2
    • /
    • pp.161-166
    • /
    • 2002
  • In view of the great disparity between forecasts of Shanghai port container handling capacity and its real results, we choose a dynamic forecast method by the causality model dynamic compensation to predict Shanghai port container handling capacity. And we forecast Shanghai port container handling capacity by using this method. We have made a satisfactory achievement, which provides a more reliable and practical way to forecast container handling capacity.

A Study on Re-calculate of Handling Capacity for Container Terminal (컨테이너 터미널 하역능력 재산정에 관한 연구)

  • 송용석;남기찬;곽규석
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.407-412
    • /
    • 2004
  • A problem of handling capacity calculation of berth is very important factor for decision about a port development scale like as the number of berth, size of back storage yard. If handling capacity per berth calculated low, the number of berth is increasing and the size of yard decided for propriety level of handling capacity. The propose of this paper is re-calculate of handling capacity for Busan container port by firstly government plan and actual result of Busan port like as waiting rate, berth share and handling capacity, and then realistic number of crane and berth share to be applied.

  • PDF

A Systematic Approach to Port related Problems An Analysis on the Actual Condition of physical Distribution System of Pusan port (항만관련문제의 시스템적 고찰 부산항 물류시스템의 실태분석)

  • Lee Cheol-Yeong;Moon Seong-Hyeok
    • Journal of Korean Port Research
    • /
    • v.2 no.1
    • /
    • pp.7-28
    • /
    • 1988
  • From the viewpoint of physical distribution, the port transport process can be regarded as a system which consists of various subsystems such as navigational aids, quay handling, transfer, storage, information If management, and co-ordination with inland transport. The handling productivity of this system is determined by the production level of the least productive subsystem. So, a productivity analysis on the flow of cargoes through each subsystem should be made in order to achieve efficient port operation. The purpose of this paper is to analyze the productivity of each subsystem in Pusan port, and to bring forward problems and finally to draw up plans for their betterment. Analyzed results on the productivity of each subsystem are as follows, i) It is known that the number of tugs with low HP should be increased by a few, the number of tugs with medium HP is appropriate, and the number of tugs with high HP is in excess of that necessary. ii ) In the case of container cargoes, it is found that the transfer and storage systems in BCTOC have the lowest handling capability, with a rate of $115\%$, leading to bottle-necks in the port transport system, while the handling rate of the storage and quay handling systems in general piers is in excess of the inherent capability. iii) In the case of the principal seaborne cargoes passing through general piers, there is found to be a remarkable bottle-neck in the storage system. In the light of these findings, both the extension of storage capability and the extension of handling productivity are urgently required to meet the needs of port users. Therefore, iv) As a short-term plan, it is proposed that many measures such as the reduction of free time, the efficient application of ODCY, etc must be brought in and v) In the long-trun, even though the handling capability will accommodate an additional 960,000 TEU in 1991, the scheduled completion date of the third development plan of Pusan port, insufficiency of handling facilities in the container terminal is still expected and concrete countermeasures will ultimately have to be taken for the port's harmonious operation. In particular, the problem of co-ordination with inland transport and urban traffic should be seriously examined together in the establishment of the Pusan port development. As a method of solving this, vi) It is suggested that Pusan port (North port) should be converted into an exclusive container ternimal and overall distribution systems to the other ports for treating general cargoes must be established. vii) And finally, it is also proposed that the arrival time (cut-off time) of influx cargoes for exports such as general merchandise and steel product should be limited, with a view to securing cargoes suitable for the operational capability of BCTOC.

  • PDF

Estimation of Air Pollutant Emissions from Port-Related Sources in the Port of Incheon (인천항 항만시설에서의 대기오염물질 배출량 산정)

  • Han, Se-Hyun;Youn, Jong-Sang;Kim, Woo-Jung;Seo, Yoon-Ho;Jung, Yong-Won
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.27 no.4
    • /
    • pp.460-471
    • /
    • 2011
  • A port has been regarded as a significant contributor to air pollution in the surrounding areas. Port-related air pollutants are released from not only marine vessels, but also various land-side sources at ports, which include cargo handling equipment, vehicles, locomotives, and fugitive dust sources by port activities such as bulk handling and vehicle movements. However, most studies in Korea have only focused on vessel emissions and there is a lack of information on the emissions from other sources at port. In this study, in order to establish the port-related emission inventory and evaluate the relative contribution of these sources to air emissions from the Port of Incheon, the emissions from land-side sources were estimated and the CAPSS (Clean Air Policy Support System) data for vessel emissions were used. In particular, the detailed information and activity data for the cargo handling equipment source were collected and the emission factors and emissions by equipment types were calculated using U.S. EPA methodologies. Total HC, CO, $NO_x$, $PM_{10}$, and $SO_2$ emissions from port-related sources including the vessel in 2007 were calculated as 229 ton/year, 638 ton/year, 4,861 ton/year, 307 ton/year, and 3,995 ton/year, respectively. It was found that the vessel was the largest contributor to air pollutant emissions from the port, the cargo handling equipment was responsible for about from 8% to 13% of HC, CO, and $NO_x$ emissions and the resuspended road dust contributed about 39% for $PM_{10}$ emissions. The results of this study will be used to establish the management and reduction strategies of air pollution in the port.


(34141) Korea Institute of Science and Technology Information, 245, Daehak-ro, Yuseong-gu, Daejeon
Copyright (C) KISTI. All Rights Reserved.