• Title/Summary/Keyword: porous membranes

Search Result 284, Processing Time 0.031 seconds

Controlled Release of Drugs from Reservoir Type Devices Coated with Porous Polyurethane Membranes (다공성 폴리우레탄으로 피막된 Reservoir형 약물 조절 방출 시스템)

  • Kim, Kil-Soo;Lee, Seung-Jin
    • Journal of Pharmaceutical Investigation
    • /
    • v.23 no.4
    • /
    • pp.207-211
    • /
    • 1993
  • Reservoir type devices were designed for long-term implantable drug delivery system. The reservoir type device was prepared with the polymethacrylic acid gel coated with polyurethane membrane. Release controlling agent (RCA) were employed to control drug release from devices via generation of micropores in the membranes. The polyurethane membrane functioned as a rate controlling barrier. The drug release pattern of hydrogel demonstrated zero order kinetics. The release rate of drugs could be regulated by varying hydrophobicity/hydrophilicity and content of the RCA, as well as the thickness of the polyurethane membrane. The release of drugs from this system was governed by pore mechanism via simple diffusion and osmotic pressure.

  • PDF

Gas Permeabilities of Plasma Polymerized Films : Temperature Dependence Study (플라즈마 고분자 필름의 기체투과도 : 온도의존성에 관한 연구)

  • 김학수;오세중
    • Membrane Journal
    • /
    • v.7 no.4
    • /
    • pp.183-190
    • /
    • 1997
  • Composite membranes were prepared by the deposition of pentafluoropyridine(PFP) or pentafluorotoluene(PFT) plasma films onto porous Celgard and nonporous poly(dimethylsiloxane) [PDMS] films. Gas permeation measurements for the composite membranes were made in the temperature range of 35$^{\circ}$C to 75 $^{\circ}$C and the solubilities in plasma polymers were measured using a Cahn Microbalance. The permeability coefficients of plasma polymers obeyed the Arrhenius relationship fairly wall. Activation energies for permeation in the plasma films increased with the size of penetrant molecules. The activation energy of plasma polymers was much lower than that of commonly used perfluoropolymers. This difference was proved to be attributable to the much lower heat of solutions of the plasma polymers compared to perfluoropolymers. The diffusion activation energies were comparable with each other.

  • PDF

Hydrophobic modification of PVDF hollow fiber membranes using polydimethylsiloxane for VMD process

  • Cui, Zhaoliang;Tong, Daqing;Li, Xue;Wang, Xiaozu;Wang, Zhaohui
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.251-257
    • /
    • 2019
  • Fabricating hydrophobic porous membrane is important for exploring the applications of membrane distillation (MD). In the present paper, poly(vinylidene fluoride) (PVDF) hollow fiber membrane was modified by coating polydimethylsiloxane (PDMS) on its surface. The effects of PDMS concentration, cross-linking temperature and cross-linking time on the performance of the composite membranes in a vacuum membrane distillation (VMD) process were investigated. It was found that the hydrophobicity and the VMD performance of the PVDF hollow fiber membrane were obviously improved by coating PDMS. The optimal PDMS concentration, cross-linking temperature and cross-linking time were 0.5 wt%, $80^{\circ}C$, and 9 hr, respectively.

Separation of MeOH/MTBE mixtures through chitosan composite membranes using pervaporation

  • Woo, Dong-Jin;Nam, Sang-Yong;Lee, Young-Moo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.62-64
    • /
    • 1996
  • Chitin, which is obtained mainly from the cuticle of a marine crustacean, has recently aroused great interest in its industrial and biomedical applications. Chitosan, deacetylated form of chitin, appears to be more useful for biomedical application and dehydration of aqueous solutions than chitin, since it has both hydroxyl and amino groups that can be modified easily. Amino groups on chitosan reacts with dialdehyde to form a Schiff base and then crosslinked, and can be easily neutralized with sulfuric acid and metal ions. Polyfunctional metal ions can form a metal-polyelectrolyte complexes with chitosan. Membranes used in modules so far working in industrial pervaporation plants are generally of composite type. This composite membrane was prepared by coating a porous polysulfone ultrafiltration membrane support of definite structure with a thin, dense layer of permselective chitosan. To apply industrial scale pervaporation process for dehydration of aqueous ethanol and isopropanol, chitosan composite membranes were prepared and tested at various conditions.

  • PDF

Fabrication of PVDF Structures by Near Field Electrospinning

  • Kim, Seong-Uk;Ji, Seung-Muk;Yeo, Jong-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.423.1-423.1
    • /
    • 2016
  • Polyvinylidene fluoride (PVDF) has drawn much attention due to its many advantages. PVDF shows high mechanical strength and flexibility, thermal stability, and good piezoelectricity enabling its application to various fields such as sensors, actuators, and energy transducers. Further studies have been conducted on PVDF in the form of thin films. The thin films exhibit different ionic conductivity according to the number of pores within the film, letting these films to be applied as electrolytes or separators of batteries. Porous PVDF membranes are also easily processed, usually made by using electrospinning. However, a large portion of researches were conducted using PVDF membranes produced by far field electrospinning, which is not a well-controlled experimental method. In this paper, we use near field electrospinning (NFES) process for more controlled, small-scaled, mesh type PVDF structures of nano to micro fibers fabricated by controlling process parameters and investigate the properties of such membranous structures. These membranes vary according to geometrical shape, pore density, and fiber thickness. We then measured the mechanical strength and piezoelectric characteristic of the structures. With various geometries in the fiber structures and various scales in the fibers, these types of structures can potentially lead to broader applications for stretchable electronics and dielectric electro active polymers.

  • PDF

The effect of backing layer for pro membranes and modules (PRO 분리막 및 모듈성능에 지지체가 미치는 영향)

  • Han, Man Jae;Jeon, Eun Joo;Sim, Yeon-Ju;Lee, Jong Hwa
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.5
    • /
    • pp.553-559
    • /
    • 2016
  • There has been increasing global interest in the environmental pollution problems produced by fossil fuel consumption and greenhouse gas emissions. In order to tackle these issues, new renewable energy such as solar, wind, bio gas, fuel cell and pressure retarded osmosis(PRO) have been developed extensively. Among these energy sources, PRO is one of the salinity gradient power generation methods. In PRO, energy is obtained by the osmotic pressure generated from the concentration difference between high and low concentration solutions separated by a semipermeable membrane. The development for high power density PRO membranes is imperative with the purpose of commercialization. This study investigates development of thin film composite PRO membrane and spiral wound module for high power density. Also, the influence of membrane backing layer on power density was identified, and the characteristic factors of PRO membranes was determined. Different backing layers were used to improve power density. As expected, the PRO membrane with more porous backing layer showed higher power density.

Hydrogen Production Using Membrane Reactors

  • Giuseppe Barbieri;Paola Bernardo;Enrico Drioli;Lee, Dong-Wook;Sea, Bong-Kuk;Lee, Kew-Ho
    • Korean Membrane Journal
    • /
    • v.5 no.1
    • /
    • pp.68-74
    • /
    • 2003
  • Methane steam reforming (MSR) reaction for hydrogen production was studied in a membrane reactor (MR) using two tubular membranes, one Pd-based and one of porous alumina. A higher methane conversion than the thermodynamic equilibrium for a traditional reactor (TR) was achieved using MRs. The experimental temperature range was 350-500$^{\circ}C$; no sweep-gas was employed during reaction tests to avoid its back-permeation through the membrane and the steam/methane molar feed ratio (m) varied in the range 3.5-5.9. The best results (the difference between the MR conversion and the thermodynamic equilibrium was of about 7%) were achieved with the alumina membrane, working with the highest steam/methane ratio and at 450$^{\circ}C$. Silica membranes prepared at KRICT laboratories were characterized with permeation tests on single gases (N$_2$, H$_2$ and CH$_4$). These membranes are suited for H$_2$ separation at high temperature.

Perfluorinated Sulfonic Acid Ionomer-PTFE Pore-filling Membranes for Polymer Electrolyte Membrane Fuel Cells (고분자전해질연료전지용 과불소계 술폰화 이오노머-PTFE 강화막)

  • Kang, Seong Eun;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.171-179
    • /
    • 2015
  • Perfluorinated sulfonic acid ionomers (PFSAs) have been widely as solid electrolyte materials for polymer electrolyte membrane fuel cells, since they exhibit excellent chemical durability under their harsh application conditions as well as good proton conductivity. Even PFSA materials, however, suffer from physical failures associated with repeated membrane swelling and deswelling, resulting in fairly reduced electrochemical lifetime. In this study, pore-filling membranes are prepared by impregnating a Nafion ionomer into the pore of a porous PTFE support film and their fundamental characteristics are evaluated. The developed pore-filling membranes exhibit extremely high proton conductivity of about $0.5S\;cm^{-1}@90^{\circ}C$ in liquid water.

Pervaporation of TFEA/MA/Water Mixtures through PVA Composite Membranes

  • Ahn, Sang-Man;Kim, Jeong-Hoon;Lee, Yong-Taek;Lee, Soo-Bok
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2005.11a
    • /
    • pp.133-147
    • /
    • 2005
  • In order to investigate applicability for 2,2,2-trifluoroethyl methacrylate (TFEMA) produced by esterification of 2,2,2-trifluoroethanol(TFEA) and methacrylic acid(MA) using pervaporation membrane, poly(vinyl alcohol) (PVA) composite membranes were prepared with glutaraldehyde(GA) onto porous polyethersulfone(PES) support. The degree of crosslinking and thickness of PVA coating layer were analyzed by swelling test and SEM(scanning electron microscopy), respectively. Pervaporation test was done with two feed mixures; TFEA/water, MA/water. The pervaporation data were obtained as a function of content of crosslinking agent, feed composition, and operating temperature, respectively. In case of TFEA-water(90/10 wt%) feed mixture at $80^{\circ}C$, the optimized membrane showed the high permeation flux of 1.5 $kg/m^2hr$ and separation factor of 320. In case of MA-water(90/10 wt%) feed mixture, the membranealso showed high permeation flux of 2.3 $kg/m^2hr$ and separation factor of 740 in same conditions.

  • PDF

Fabrication of Long-range Ordered Porous Alumina Membranes with Various Voltages Applied for Hard Anodization (양극산화 인가전압에 따른 장범위 규칙 다공성 알루미나 멤브레인의 제조)

  • Jang, HyunChul;Choi, JungMi;An, KiTae;Lee, Naesung;Park, Yunsun;Sok, JungHyun
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.1
    • /
    • pp.59-63
    • /
    • 2012
  • Studying the long-range ordering of nanopores on the anodic aluminum oxide (AAO) membranes under a hard anodization (HA) approach is crucial in producing well-aligned nanopores on the AAO membranes. Electro-polishing in a mixture of ethanol and perchloric acid for 5 min removed marks formed by rolling and produced flat surfaces on aluminum substrates. The AAO was formed by the first HA process, providing seeds for the subsequent production of uniform AAO nanopores. The second HA process carried out on the seeds produced well-aligned, uniform AAO nanopores. The AAO nanopores, varying in size and shape, were observed with voltages applied for HA. This study provides a route for controlling the size and shape of AAO nanopores by changing the applied voltages.