• 제목/요약/키워드: porous aggregate

검색결과 133건 처리시간 0.027초

Engineering Properties of Permeable Polymer Concrete for Pavement Using Polypropylene Fiber (폴리프로필렌섬유를 혼입한 포장용 투수성 폴리머 콘크리트의 공학적 성질)

  • Sung, Chan-Yong;Lee, Seung-Hoon
    • Korean Journal of Agricultural Science
    • /
    • 제37권2호
    • /
    • pp.277-283
    • /
    • 2010
  • Research on permeable pavement like asphalt and concrete pavement with porous structure has been increasing due to environmental and functional need such as reduction of run off and flood. This study was performed to evaluate void ratio, permeability coefficient, and compressive strength of permeable polymer concrete (PPC) using crushed and recycled coarse aggregate that is obtained from waste concrete. Also, 6 mm length of polypropylene fiber was used to increase toughness and interlocking between aggregate and aggregate surrounded by binder. Binder and filler used were unsaturated polyester resin and CaCO3, respectively. The mix proportions were determined to satisfy the requirement for the workability and slump according to aggregate sizes 5~10 mm. In the test results, regardless of kinds of aggregates and fiber contents, the void ratio, permeability coefficient and compressive strength of all types of PPC showed the higher than the criterion of porous concrete that is used in permeable pavement in Korea. Also, strengths of PPC with increase polypropylene fiber volume fraction showed slightly increased tendency due to increase binder with increase of fiber volume fraction. Accordingly, polypropylene fiber and recycled coarse aggregate can be used for permeable pavement.

Compressive Strength Property of Cement Matrix According to the Type of Lightweight Aggregate (경량골재의 종류에 따른 시멘트 경화체의 강도 특성 평가)

  • Pyeon, Myeong-Jang;Jeong, Su-Mi;Kim, Ju-Sung;Kim, Ho-Jin;Park, Sun-Gyu
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.111-112
    • /
    • 2022
  • Lightweight aggregate is a porous material that has a lower density than natural aggregate and is a lightweight construction material. Lightweight Aggregate has a suitable purpose because it is effective in reducing the heavy unit mass in high-rise buildings. However, since lightweight aggregate has weak strength and high water absorption compared to natural aggregate, it is difficult to control the quality of concrete. Although lightweight aggregate has disadvantages such as high water absorption, it is expected that the demand for lightweight aggregate concrete will continue to use in the future because the advantage of being able to reduce the weight of concrete is greater. In this study, we conducted an experimantal study on the compressive strength property of cement matrix according to the type of lightweight aggregate.

  • PDF

Effect of Blast Furnace Slag, Hwang-toh and Reinforcing Fibers on The Physical and Mechanical Properties of Porous Concrete Using Blast Furnace Slag Coarse Aggregate (고로슬래그 골재를 사용한 다공성 콘크리트의 물리·역학적 특성에 미치는 고로슬래그 미분말, 황토 및 보강섬유의 효과)

  • Lee, Jin-Hyung;Park, Chan-Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • 제52권5호
    • /
    • pp.53-60
    • /
    • 2010
  • The effects of blast furnace slag, hwang-toh, and reinforcing fiber on the physical and mechanical properties of porous concrete using blast furnace slag coarse aggregates have been evaluated in this study. The effect of the depending on replacement ratio of blast furnace slag to cement was investigated such that the replacement ratio was varied to 0 %, 25 % and 50 %. Also, the replacement ratios of hwang-toh were 0, 20 and 30 %. The polyvinyl alcohol fiber was used for the reinforcing fiber. A series of pH, unit mass, and void ratio tests have been performed to study the physical properties of the porous concrete using blast furnace slag coarse aggregates with the polyvinyl alcohol fiber and the replacement ratios of blast furnace slag, hwang-toh, while a series of compressive tests have been performed to evaluate the strength property depending on polyvinyl alcohol fiber and the replacement ratios of blast furnace slag, hwang-toh. The test results indicated that the physical and mechanical properties of porous concrete using blast furnace slag coarse aggregates is affected by the replacement ratio of blast furnace slag, and the fiber contents. According to the tests with polyvinyl alcohol fiber contents, the void ratio was decreased and the compressive strength was upgraded.

Analysis of Pore Characteristics on the Porous Body-Porosity Index of Ic and Is in Light Weight Aggregate (다공체 소지의 기공 특성 분석-경량골재에서의 기공지수 Ic와 Is에 대하여)

  • 권영진;이기강
    • Journal of the Korean Ceramic Society
    • /
    • 제41권2호
    • /
    • pp.176-181
    • /
    • 2004
  • EAF (Electric Arc Furnace) dust is classified as special wastes containing heavy metal contaminants may cause to damage an environment such as underground water contamination if they were not treated properly. For reutilizing the EAF dust, the porous body was made from EAF dust/clay composition system, and analyzed pore characteristics. It was found that a light-aggregate body was made up two different microstructures. One was non-black and dense microstructure which located near surface, and the other was black and porous microstructure (black coring) which located inner part. For systematizing the relationship of the black-coring area and the bloating degree, we defined the Ic(core index) and Is(shell index). It was found that the optimal bloating conditions of artificial light-weight aggregate were more than 0.5 of Ic and 0.4 of Is.

An Experimental Study on the Properties of Porous Concrete according to Correction Factor and Specimen Thickness (보정계수 및 시험체두께가 포러스콘크리트의 기초물성에 미치는 영향에 관한 실험적 연구)

  • 김재환;이성일;장종호;오시덕;박정호;김무한
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2002년도 학술.기술논문발표회
    • /
    • pp.55-58
    • /
    • 2002
  • This study is to analyze the influence of correction factor and specimen thickness on the fundamental properties of porous concrete. Results of this study were shown as follows; 1) As correction factor decrease, compaction time according to correction factor and specimen thickness decrease. Also, though correction factor is same, as specimen thickness increase, compaction time increase. So It mutt be considered that the influence of compaction time according to correction factor and specimen thickness. 2) As correction factor decrease, difference of measured thickness and designed thickness according to correction factor and specimen thickness decrease. Also, correction factor of aggregate of 10~l5mm is smaller than that of 5~l0mm. So It must be considered that the influence of correction factor according to size of aggregate.

  • PDF

An experimental study on the mechanical properties of carbon fiber reinforced porous concrete utilizing recycled aggregate and silica fume (재생골재와 실리카흄을 이용한 탄소섬유보강 포러스콘크리트의 역학적 특성에 관한 실험적 연구)

  • 김정환;이봉춘;김상혁;박승범
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.655-660
    • /
    • 2002
  • The purpose of this study is to analyze void ratio, coefficient of water permeability, and strength characteristics when silica fume and carbon fibers were added in order to improve the strength of porous concrete, and when recycled aggregates were used. Comparing with the case that recycled aggregate was not used, as the replacement ratio of recycled aggregate increased, the differences in void ratios and strength characteristics were decreased. In the case that silica fume was used, the content of 10% silica fume was most effective in improving strength. In the case that carbon fibers were used, the content of 3% carbon fiber were good to achieve the highest flexural strength, and Pan-derived CF was much better than pitch-derived CF in improving these effects.

  • PDF

A Compressive Strength and Mixing Properties of Lightweight Porous Block Using Lightweight Aggregate by Variation of Manufacture Time (인공경량골재 사용 경량투수블록의 제조시간 변화에 따른 배합 및 압축강도 특성)

  • Kim, Young-Uk;Lee, Kyung-Su;Oh, Tea-Gue;Jeong, Su-Bin;Ban, Jun-Mo;Choi, Se-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2018년도 추계 학술논문 발표대회
    • /
    • pp.118-119
    • /
    • 2018
  • The purpose of this study is to investigate the compressive strength and mixing properties of the lightweight block, which has been manufactured without the pre-wetting process, in the lightweight block using domestic artificial lightweight aggregate. The test results of the specimens produced within 30 minutes after the preparation showed high compressive strength but poor permeability. Therefore, the elapsed time after the manufacture, which is expected to have required compressive strength and permeability, was about 60 minutes in this study.

  • PDF

Effect of Iron Ore Tailings Replacing Porous Basalt on Properties of Cement Stabilized Macadam

  • Qifang Ren;Fan Bu;Qinglin Huang;Haijun Yin;Yuelei Zhu;Rui Ma;Yi Ding;Libing Zhang;Jingchun Li;Lin Ju;Yanyan Wang;Wei Xu;Haixia Ji;Won-Chun Oh
    • Korean Journal of Materials Research
    • /
    • 제34권6호
    • /
    • pp.291-302
    • /
    • 2024
  • In this paper, iron ore tailings (IOT) were separated from the tailings field and used to prepare cement stabilized macadam (CSM) with porous basalt aggregate. First, the basic properties of the raw materials were studied. Porous basalt was replaced by IOT at ratios of 0, 20 %, 40 %, 60 %, 80 %, and 100 % as fine aggregate to prepare CSM, and the effects of different cement dosage (4 %, 5 %, 6 %) on CSM performance were also investigated. CSM's durability and mechanical performance with ages of 7 d, 28 d, and 90 d were studied with the unconfined compression strength test, splitting tensile strength test, compressive modulus test and freeze-thaw test, respectively. The changes in Ca2+ content in CSM of different ages and different IOT ratios were analyzed by the ethylene diamine tetraacetic acid (EDTA) titration method, and the micro-morphology of CSM with different ages and different IOT replaced ratio were observed by scanning electron microscopy (SEM). It was found that with the same cement dosage, the strengths of the IOT-replaced CSM were weaker than that of the porous basalt aggregate at early stage, and the strength was highest at the replaced ratio of 60 %. With a cement dosage of 4 %, the unconfined compressive strength of CSM without IOT was increased by 6.78 % at ages from 28 d to 90 d, while the splitting tensile strength increased by 7.89 %. However, once the IOT replaced ratio reached 100 %, the values increased by about 76.24 % and 17.78 %, which was better than 0 % IOT. The CSM-IOT performed better than the porous basalt CSM at 90 d age. This means IOT can replace porous basalt fine aggregate as a pavement base.

Frost resistance of porous concrete assuming actual environment (實環境を考慮したポーラスコンクリートの耐凍害性の評価(실제 환경을 고려한 다공질 콘크리트의 내동해성(耐凍害性) 평가))

  • NAKAMURA, Takuro;HORIGUCHI, Takashi;SHIMURA, Kazunori;SUGAWARA, Takashi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 한국건축시공학회 2008년도 추계 학술논문 발표대회
    • /
    • pp.227-233
    • /
    • 2008
  • Porous concrete has large continuous voids of 20-30 % by volume, and this concrete is attractive as environmental material in Japan i.e. permeable road pavement, river bank protection with vegetation and green roof system which influence thermal environment. It is necessary to confirm the frost resistance when constructing porous concrete structure in cold region. However applicable test method and evaluation criterion of porous concrete has not defined yet. Therefore, the object of this study is to investigate the frost resistance of porous concrete and this investigation attempts to address this concern by comparing 4 kinds of specified freezing and thawing tests methods (JIS A1148 procedure A/B and RILEM CIF/CDF test) in consideration of actual environment. RILEM freeze-thaw tests are different from JIS A1148 freeze-thaw tests, which are widely adopted for evaluating the frost resistance of conventional concrete in Japan, in water absorption, cooling rate, length of freezing and thawing period, and number of freezing and thawing cycles. RILEM CIF test measures internal damage and is primarily applicable for pure frost attack. CDF test is appropriate for freeze-thaw and de-icing salt attack. JIS A1148 procedure A/B showed extremely low frost resistance of porous concrete if the large continuous voids were filled with water and the ice expansion in the large continuous voids set in during cooling. Frost resistance of porous concrete was improved by mixing coarse aggregate (G7) which particle size is smaller and fine aggregate in JIS freezing and thawing tests. RILEM CIF/CDF test showed that freeze-thaw and de-icing resistance of porous concrete was seems to be superior in that of conventional concrete.

  • PDF

Void ratio and Strength Properties of Porous Concrete Utilizing Rice Husk Ash and Recycled Aggregate for Planting (식생 적용을 위한 왕겨재와 순환골재를 활용한 포러스 콘크리트의 공극률 및 강도 특성)

  • Kim, Young-Ik;Sung, Chan-Yong
    • Korean Journal of Agricultural Science
    • /
    • 제33권2호
    • /
    • pp.167-177
    • /
    • 2006
  • This study was performed to evaluate void ratio, compressive and flexural strength, and pH properties according to the admixture ratio of rice husk ash, aggregate size, and neutral treatment time of porous concrete with an admixture of rice husk ash produced as an agricultural by-product. The SEM results for cement mortar with a 5% rice husk ash admixture for the weight of cement formed more C-S-H hydrates due to the $SiO_2$ present in the applied rice husk ash. According to the results of the SEM test, the $SiO_2$ that was a major chemical element of rice husk ash generated a large amount of calcium hydroxide in the early stage of the hydration process of cement leading to the formation of ettringite. The void ratio of porous concrete with an admixture of rice husk ash decreased with increasing admixture ratio of rice husk ash. In addition, the void ratio of porous concrete with an admixture of rice husk ash decreased compared to porous concrete with no admixture of rice husk ash. The compressive and flexural strength of porous concrete with a 5% and 10% admixture ratio of rice husk ash slightly increased compared to concrete with no admixture of rice husk ash. The pH value of porous concrete rapidly decreased immediately after neutral treatment. Then, it gradually increased and decreased again after 14 days. Also, for neutral treatment, the pH value of porous concrete showed appropriate pH levels(less than 9.5) in all mixtures for planting at 28 curing days.

  • PDF