• 제목/요약/키워드: pore volume-diameter

Search Result 117, Processing Time 0.022 seconds

Evaluation of Mesoporous Alumina Adsorbent for the Purification of Paclitaxel (Paclitaxel 정제를 위한 메조기공 알루미나 흡착제 평가)

  • Oh, Hyeon-Jeong;Jung, Kyeong Youl;Kim, Jin-Hyun
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.176-182
    • /
    • 2013
  • Several types of mesoporous alumina adsorbents with different physical properties were prepared by spray pyrolysis and were used for the separation/purification of the anticancer agent paclitaxel. The pore diameter of the adsorbents had a greater effect than did the surface area and the pore volume on the removal of plant-derived impurities. An appropriate pore diameter (~10.8 nm) was required for effective impurity removal. At a constant pore diameter, the surface area of the adsorbent affected not only the purity but also the yield of paclitaxel. Also, increasing the surface area of the adsorbent resulted in an increase in the adsorption of paclitaxel and impurities (biomass-derived tar and wax components). Removal of these impurities was confirmed by HPLC analysis of the absorbent after the treatment and TGA of the organic substances that were bound to the adsorbent.

Improved Mesoporous Structure of High Surface Area Carbon Nanofiber for Electrical Double-Layer Capacitors

  • Lee, Young-Geun.;An, Geon-Hyoung;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.192-198
    • /
    • 2017
  • Carbon nanofiber (CNF) is used as an electrode material for electrical double layer capacitors (EDLCs), and is being consistently researched to improve its electrochemical performance. However, CNF still faces important challenges due to the low mesopore volume, leading to a poor high-rate performance. In the present study, we prepared the unique architecture of the activated mesoporous CNF with a high specific surface area and high mesopore volume, which were successfully synthesized using PMMA as a pore-forming agent and the KOH activation. The activated mesoporous CNF was found to exhibit the high specific surface area of $703m^2g^{-1}$, total pore volume of $0.51cm^3g^{-1}$, average pore diameter of 2.9 nm, and high mesopore volume of 35.2 %. The activated mesoporous CNF also indicated the high specific capacitance of $143F\;g^{-1}$, high-rate performance, high energy density of $17.9-13.0W\;h\;kg^{-1}$, and excellent cycling stability. Therefore, this unique architecture with a high specific surface area and high mesopore volume provides profitable synergistic effects in terms of the increased electrical double-layer area and favorable ion diffusion at a high current density. Consequently, the activated mesoporous CNF is a promising candidate as an electrode material for high-performance EDLCs.

Carbon nanoballs: formation mechanism and electrochemical performance as an electrode material for the air cathode of a Li-air battery

  • Kang, Jun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.8
    • /
    • pp.838-842
    • /
    • 2015
  • The Li-air battery is a promising candidate for the most energy-dense electrochemical power source because it has 5 to 10 times greater energy storage capacity than that of Li-ion batteries. However, the Li-air cell performance falls short of the theoretical estimate, primarily because the discharge terminates well before the pore volume of the air electrode is completely filled with lithium oxides. Therefore, the structure of carbon used in the air electrode is a critical factor that affects the performance of Li-air batteries. In a previous study, we reported a new class of carbon nanomaterial, named carbon nanoballs (CNBs), consisting of highly mesoporous spheres. Structural characterization revealed that the synthesized CNBs have excellent a meso-macro hierarchical pore structure, with an average diameter greater than 10 nm and a total pore volume more than $1.00cm^3g^{-1}$. In this study, CNBs are applied in an actual Li-air battery to evaluate the electrochemical performance. The formation mechanism and electrochemical performance of the CNBs are discussed in detail.

Effect of Reaction Conditions of Pyrolysis on the Characteristics of Sludge Char (열분해 조건에 따른 슬러지 Char 특성 변화)

  • Cha, Jin-Sun;Park, Young-Kwon
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.851-856
    • /
    • 2011
  • In this study, char was produced via pyrolysis of sewage sludge and the effects of reaction conditions(temperature, heating rate, reaction time) on characteristics of char were investigated. As temperature increased from $300^{\circ}C$ to $800^{\circ}C$, the surface area of sludge char increased in general but decreased at $700^{\circ}C$ temporarily. The effect of heating rate on specific surface area and pore volume of char was not large. Meanwhile, specific surface area and pore volume increased with reaction time but average pore diameter decreased.

Variation of Pore Structure of Coal-based Activated Carbon with Burn-off of Steam Activation (수증기 활성화법으로 제조된 석탄계 활성탄의 Burn-off에 따른 세공구조의 변화)

  • Lee, Song-Woo;Moon, Jang-Cheon;Lee, Chang-Han;Choi, Dong-Hoon;Ryu, Dong-Chun;Song, Seung-Koo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2141-2148
    • /
    • 2000
  • This study is to investigate changes of pore structure with different burn-off degree of steam activated carbons manufactured from domestic anthracite. The activated carbons were characterized by adsorption of nitrogen at 77 K. Steam activation substantially enhanced the porosity of the activated carbons. Burn-off increased linearly according to increasing activation time, and total pore volume and BET surface area increased with burn-off. Activation at $800^{\circ}C$ increased more micropore volume than that at $950^{\circ}C$. Activated carbons manufactured at high temperature had less microporosity than that at lower temperature, but had more developed macroporosity. The steam activation produced an enlargement of pore below $100{\AA}$ diameter in the activated carbons. Furthermore, the porosity in the $6{\sim}40{\AA}$ pore diameters range increased considerably with the degree of burn-off.

  • PDF

Low Temperature Adsorption of Hydrogen on Nanoporous Materials

  • Jhung, Sung-Hwa;Yoon, Ji-Woong;Kim, Hye-Kyung;Chang, Jong-San
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.7
    • /
    • pp.1075-1078
    • /
    • 2005
  • Hydrogen adsorption on various porous materials have been studied with a volumetric method at low temperature in the pressure of 0-760 torr. Their hydrogen uptakes depend at least partly on microporosity rather than total porosity. However, it is also necessary to consider other parameters such as pore size and pore architecture to explain the adsorption capacity. The heat of adsorption and adsorption-desorption-readsorption experiments show that the hydrogen adsorption over the porous materials are composed of physisorption with negligible contribution of chemisorption. Among the porous materials studied in this work, SAPO-34 has the highest adsorption capacity of 160 mL/g at 77 K and 1 atm probably due to high micropore surface area, micropore volume and narrow pore diameter.

Numerical Analysis on Consolidation of Soft Clay by Sand Drain with Heat Injection (수치해석을 통한 샌드드레인과 열주입에 의한 연약지반의 압밀 해석)

  • Koy, Channarith;Yune, Chan-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.45-57
    • /
    • 2017
  • Temperature change affects consolidation behavior of soft clays. The increase of temperature in soft clays induces the increase of pore water pressure. The dissipation of the excess pore water pressure decreases volume and void ratio. Also, the consolidation rate is accelerated by high temperature which induces the decrease of viscosity of pore fluid. The effects of temperature on the consolidation behavior such as consolidation settlement, consolidation time, and pore water pressure were investigated in this study. A numerical analysis of hydro-mechanical (HM) and thermo-hydro-mechanical (THM) behavior was performed. The combination of heat injection and sand drain for consolidating the soft ground, with varying temperature (40 and $60^{\circ}C$) and sand drain diameter (40, 60, and 80 mm), was considered. The results show that the temperature inside soil specimen increases with the increase of the temperature of heating source and the diameter of sand drain. Moreover, the heat injection increases the excess pore water pressure and, accordingly, induces additional settlement in overconsolidated (OC) state and reduces the consolidation time in normally consolidated (NC) state.

Effect of Pore Size of Mesoporous Spherical Silica for the Purification of Paclitaxel from Plant Cell Cultures (식물세포배양으로부터 Paclitaxel 정제를 위한 메조다공성 실리카의 기공크기 영향)

  • Oh, Hyeon-Jeong;Jung, Kyeong Youl;Kim, Jin-Hyun
    • KSBB Journal
    • /
    • v.28 no.3
    • /
    • pp.208-212
    • /
    • 2013
  • Four types of mesoporous spherical silica adsorbents with different physical properties were prepared by spray pyrolysis and were used for the purification of the anticancer agent paclitaxel from plant cell cultures. Pore size had a greater effect on the removal of plant-derived impurities during the pre-purification of paclitaxel compared with surface area and pore volume. An appropriate pore diameter (~9.07 nm) was required to achieve the highest purity (~46.1%) and yield (~82.3%) of paclitaxel. These results were confirmed by HPLC analysis of the absorbent after treatment and Thermogravimetric analysis of the organic substances bonded to the adsorbent.

Prediction of transverse settlement trough considering the combined effects of excavation and groundwater depression

  • Kim, Jonguk;Kim, Jungjoo;Lee, Jaekook;Yoo, Hankyu
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.851-859
    • /
    • 2018
  • There are two primary causes of the ground movement due to tunnelling in urban areas; firstly the lost ground and secondly the groundwater depression during construction. The groundwater depression was usually not considered as a cause of settlement in previous research works. The main purpose of this study is to analyze the combined effect of these two phenomena on the transverse settlement trough. Centrifuge model tests and numerical analysis were primarily selected as the methodology. The characteristics of settlement trough were analyzed by performing centrifuge model tests where acceleration reached up to 80g condition. Two different types of tunnel models of 180 mm diameter were prepared in order to match the prototype of a large tunnel of 14.4 m diameter. A volume loss model was made to simulate the excavation procedure at different volume loss and a drainage tunnel model was made to simulate the reduction in pore pressure distribution. Numerical analysis was performed using FLAC 2D program in order to analyze the effects of various groundwater depression values on the settlement trough. Unconfined fluid flow condition was selected to develop the phreatic surface and groundwater level on the surface. The settlement troughs obtained in the results were investigated according to the combined effect of excavation and groundwater depression. Subsequently, a new curve is suggested to consider elastic settlement in the modified Gaussian curve. The results show that the effects of groundwater depression are considerable as the settlement trough gets deeper and wider compared to the trough obtained only due to excavation. The relationships of maximum settlement and infection point with the reduced pore pressure at tunnel centerline are also suggested.

Performance Test of $TiO_2$ Catalyst in VOCs Photocatalytic Degradation (VOCs 광촉매 분해용 $TiO_2$촉매제조 및 성능평가)

  • Lee Seung-Bum;Lee Jae-Dong;Park Yoon-Shin
    • Journal of environmental and Sanitary engineering
    • /
    • v.20 no.4 s.58
    • /
    • pp.45-50
    • /
    • 2005
  • Titania gel formations were prepared by sol-gel method using titanium(IV) chloride $(TiCl_4)$, and its characteristics were analyzed by varying the $epoxide/TiCl_4$ ratio and the amount of water In the end, titania $(TiO_2)$ aerogel were prepared using supercritical drying process. VOCs such as benzene, toluene, and m-xylene (BTX) were oxidized using prepared titania aerogel and commercially available $TiO_2$, and its performance was compared. The surface area, pore volume, and average pore diameter of 1,2-epoxybutane are significantly smaller than the propylene oxide. And the titania aerogels with 6 moi of epoxides have high surface areas, pore volumes, and average pore diameters. As a result of photo-oxidation, conversion of benzene was reached about $70\%$, and other reactants were reached about $60\%$ similarly. The conversion of BTX was increased as inlet concentration decreased. The reactivity of titania calcined at $600^{\circ}C$ was greater than $400^{\circ}C$ and $800^{\circ}C$. Water is required as a reactants for the oxidation of VOCs, and the continuous consumption of hydroxyl radicals required replenishments to maintain catalyst activity. The activity ratio increased with increasing reaction time when enough amount of water was present in the reactor.