• Title/Summary/Keyword: pore volume test

Search Result 116, Processing Time 0.027 seconds

Introduction to European Standard Methods for Physical and Chemical Analysis of Horticultural Substrates (원예용 배지의 물리·화학성 분석을 위한 유럽의 표준방법)

  • Kim, Kye-Hoon;Kang, Ji-Young
    • Horticultural Science & Technology
    • /
    • v.19 no.2
    • /
    • pp.179-185
    • /
    • 2001
  • Throughout the world, physical and chemical analyses of horticultural substrates are carried out in many different ways at the different laboratories. In Europe, standardization in properties and analytical methods of horticultural substrates has been a topic over the last decades. As a result, the CEN methods as European standard methods for the physical and chemical analyses were introduced and the final draft was reported in 1999 by CEN(Committee for European Standardization). Dry matter and moisture content are analyzed after drying samples at $103^{\circ}C$. Laboratory compacted bulk density is analyzed by determining the weight of sample compacted in the test cylinder with constant volume. Dry bulk density, particle density, total pore space, water volume, air volume and volume shrinkage are determined by saturating, draining and drying the sample using double rings and a sand suction table. pH and EC are analyzed by 1:5(sample:distilled water) extraction method on the basis of volume. Organic matter and ash content are determined after drying and combusting the samples. Now, CEN methods are being regarded almost as European standard methods. Further study needs to be carried out for universal applicability of the CEN methods to all the substrates.

  • PDF

Development of High Performance MEA by Decal Method for PEM Fuel Cell (데칼 공정을 적용한 고성능 MEA 개발)

  • Lee, Ki-Sub;Lee, Jae-Seung;Kwon, Nak-Hyun;Hwang, In-Chul
    • Journal of Hydrogen and New Energy
    • /
    • v.22 no.5
    • /
    • pp.585-591
    • /
    • 2011
  • This study has focused on the development of high performance membrane-electrode assemblies (MEAs) fabricated by decal method for proton exchange membrane fuel cell (PEMFC). To study the effect of ionomer contents on performance, we fabricated MEAs with several electrodes which were prepared by varying the quantity of ionomer from 20 wt.% to 45 wt.% in catalyst layer. The MEA performance was obtained through single cell test. The MEA prepared from electrode with 25wt.% of ionomer showed the best performance. We evaluated the surface area and pore volume of electrode with BET. We found that the surface area and pore volume in electrode decreased rapidly at the electrode with 40wt.% of ionomer in catalyst layer. MEA was fabricated by roll laminator machine and the roll laminating conditions for the preparation of MEA, such as laminating press, temperature and speed, were optimized. The MEA performance is not affected by laminating temperature and speed, but roll laminating press have a great effect on MEA performance.

Impregnation of Nitrogen Functionalities on Activated Carbon Fiber Adsorbents for Low-level CO2 Capture (저농도 이산화탄소 포집용 활성탄소섬유 흡착제의 질소작용기 함침연구)

  • Hwang, Su-Hyun;Kim, Dong-Woo;Jung, Dong-Won;Jo, Young-Min
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.32 no.2
    • /
    • pp.176-183
    • /
    • 2016
  • Activated carbon fibers (ACFs) for $CO_2$ adsorption were prepared from polyacrylonitrile (PAN) fiber through the systematic processes such as oxidation, activation and amination with the focus on the formation of nitration functional groups. Textural analysis of test samples revealed the decrease of specific surface area and pore volume by chemical activation including amination. The ratio of micropores to the total volume was 0.85 to 0.91, which was high enough with the pore size of 1.57 to 1.77 nm. Nitrogen compounds such as imine, pyridine and pyrrole presenting favorable interforces to $CO_2$ molecules were formed throughout the whole preparation steps. The aminated ACF adsorbent showed the enhanced adsorption capacity, 0.40 mmol/g for low-level $CO_2$ flow (3000 ppm) at room temperature. Selectivity of $CO_2$ against dry air ($O_2$ & $N_2$) also increased from 1.00 to 4.66 by amination.

Properties of Polymer-Modified Mortars Using Methylmethacrylate-Butyl Acrylate Latexes with Various Monomer Ratios (모노머비를 변화한 MMA/BA 합성 라텍스 혼입 폴리머 시멘트 모르타르의 성질)

  • Hyung, Won-Gil;Kim, Wan-Ki;Choi, Nak-Woon;Soh, Yang-Seob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.273-279
    • /
    • 2003
  • The purpose of this study is to clarify the effect of the monomer ratio on properties of the polymer-modified mortars using methylmethacrylate-butyl acrylate(MMA/BA) latexes, and to obtain basic data necessary to develop appropriate latexes for cement modifiers. From the test results, we knew that the pore volume of polymer-modified mortars using MMA/BA latexes at bound MMA contents of 60 and 70 percent is 7.5∼75nm and the fine pore volume is increased with an increase in the polymer-cement ratio. The total pore volume of polymer-modified mortars using MMA/BA latexes is linearly reduced with an increase in the bound MMA content and increased in the polymer-cement ratio. In general, the superior compressive strength of polymer-modified mortars using MMA/BA latexes is obtained at a bound MMA content of 70 percent and a polymer-cement ratio of 15%. And, the water absorption and chloride ion penetration depth are greatly affected by the polymer-cement ratio rather than the bound MMA content. The important factors affecting the properties of polymer-modified mortars using MMA/BA latexes polymerized with various monomer ratios are the variations of the pore size distribution with changing bound MMA content and the polymer-cement ratio.

Effect of Porosity on the High-Cycle Fatigue Behavior of Al-Si-Mg Casting Alloy (Al-Si-Mg계 주조용 알루미늄 합금의 고주기 피로 거동에 미치는 기공의 영향)

  • Lee, Young-Jae;Kang, Won-Guk;Euh, Kwang-Jun;Cho, Kyu-Sang;Lee, Kee-Ahn
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.296-303
    • /
    • 2009
  • The effect of porosity on the high-cycle fatigue properties of Al-Si-Mg casting aluminum alloys was investigated in this study. Microstructure examination, tensile and high-cycle fatigue test were conducted on both Al-Si-Mg casted (F) and heat-treated (T6) conditions. Porosity characteristics on the fracture surfaces of fatigue-tested samples were examined using SEM and image analysis. The microstructure observation results showed that eutectic Si particles were homogeneously dispersed in the matrix of the Al-Si-Mg casting alloys, but there were porosities formed as cast defects. The high-cycle fatigue results indicated that the fatigue strength of the 356-T6 alloy was higher than that of the 356-F alloys because of the significant reduction in volume fraction of pores by heat treatment. The SEM fractography results showed that porosity affected detrimental effect on the fatigue life: 80% of all tested samples fractured as a result of porosity which acted as the main crack initiation site. It was found that fatigue life decreased as the size of the surface pore increased. A comparison was made between surface pore and inner pore for its effect on the fatigue behavior. The results showed that the fatigue strength with the inner pores was higher than that of the surface pore.

Effect of Porosity on the High-Cycle Fatigue Behavior of Al-Si-Mg Casting Alloy (Al-Si-Mg계 주조용 알루미늄 합금의 고주기 피로 거동에 미치는 기공의 영향)

  • Lee, Young-Jae;Kang, Won-Guk;Euh, Kwang-Jun;Cho, Kyu-Sang;Lee, Kee-Ahn
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.350-352
    • /
    • 2009
  • The effect of porosity on the high-cycle fatigue properties of Al-Si-Mg casting aluminum alloys was investigated in this study. Microstructure examination, tensile and high-cycle fatigue test were conducted on both Al-Si-Mg casted (F) and heat-treated (T6) conditions. Porosity characteristics on the fracture surfaces of fatigue-tested samples were examined using SEM and image analysis. The microstructure observation results showed that eutectic Si particles were homogeneously dispersed in the matrix of the Al-Si-Mg casting alloys, but there were porosities formed as cast defects. The high-cycle fatigue results indicated that the fatigue strength of the 356-T6 alloy was higher than that of the 356-F alloys because of the significant reduction in volume fraction of pores by heat treatment. The SEM fractography results showed that porosity affected detrimental effect on the fatigue life: 80% of all tested samples fractured as a result of porosity which acted as the main crack initiation site. It was found that fatigue life decreased as the size of the surface pore increased. A comparison was made between surface pore and inner pore fur its effect on the fatigue behavior. The results showed that the fatigue strength with the inner pores was higher than that of the surface pore.

  • PDF

Adsorption Properties of Demineralized Activated Carbon (세정 활성탄의 흡착특성)

  • 김정열;신창호;서문원;김영호;이근희;지상운
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.18 no.1
    • /
    • pp.85-91
    • /
    • 1996
  • Commercially available activated carbon was treated with 0.2N NaOH/0.1N HCl to decrease the ash contents and to analyze the effect of demineralization. We have studied their properties and adsorptivity to solvents such as benzene, acetone, toluene and carbon tetrachloride, ammonia and also aldehydes of cigarette smoke. By demineralization with NaOH/HCl, surface area and pore volume were increased up to 10 - 20% according to developement of micro-pore and pH of activated carbon was also changed from 10.2 to 6.3. Surface acidity of the activated carbon treated with chemicals increased slightly. The chemical treatment led to small increase in adsorptioil properties of solvents, ammonia and aldehydes of cigarette smoke, but content of chlorine and sulfur in activated carbon were reduced. As the results of smoking test, charcoal taste caused by the activated carbon was reduced significantly by the treatment with NaOH/HCl.

  • PDF

Antibacterial Activity of Activated Carbon Fibers Containing Silver Metal

  • Park, Soo-Jin;Kim, Byung-Joo;Ryu, Seung-Kon
    • Carbon letters
    • /
    • v.4 no.3
    • /
    • pp.140-145
    • /
    • 2003
  • Antibacterial behaviors of PAN-based activated carbon fibers (ACFs) containing silver metal were investigated. The effects of surface and pore structures of the ACFs were studied by $N_2$/77 K adsorption and D-R plot as a function of silver loading content. The antibacterial activities were investigated by a dilution test against Staphylococcus aureus (S. aureus; gram positive) and Klebsiella pnemoniae (K. pnumoniae; gram negative). As experimental results, the ACFs showed some decreases in specific surface areas, micropore volumes, and total pore volume with an increase of silver content. However, the antibacterial activities of the ACFs were strongly increased against S. aureus as well as K. pnumoniae, which could be attributed to the presence of antibacterial metal in the ACFs system.

  • PDF

A Study on the Compressive Strength & Pore Structure of Shotcrete using for Mine Ready-mixed Materials (광산용 레디믹스트 재료를 사용한 숏크리트의 압축강도 및 공극구조에 대한 고찰)

  • Lee, Heung-Soo;Kim, Dong-Min;Choi, Seung-Kyung;Lee, Ju-Hoe
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1517-1521
    • /
    • 2009
  • A variation of pore structure of shotcrete matrix was experimented by Mercury Intrusion Porosimetry, and the relation with compressive strength was also examined. As a result of the Mercury Intrusion Porosimetry(MIP) test, RM-P1 Batch the macropore diameter of the RM-BFS2 and RM-BFS3 Batch than to have a relatively macropore can see a lot of long-term durability performance degradation. Also, K and N Batch the current is applied to the mine if the factors on shotcrete durability performance of the macropore volume of the entire appears to be a long-term durability performance in the fall.

  • PDF

Development of Polymer-Concrete Composite(I) - Physical Properties of Polymer-Cement Concrete Composites - (폴리머-콘크리트 복합재료 개발(I) - 폴리머-시멘트 콘크리트의 물성 -)

  • Hwang, Eui-Hwan;Kil, Deog-Soo;Oh, In-Seok
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.979-984
    • /
    • 1997
  • Test specimens of polymer-cement concrete composites were prepared using styrene-butadiene rubber(SBR) latex, ethylenevinyl acetate(EVA) and polyacrylic ester(PAE) emulsions as polymer dispersions in cement modified system at constant slump($10{\pm}0.5cm$), then compressive and flexural strengths water absorption, pore size distribution, and microstructures were investigated. Compressive and flexural strengths of these composites were remarkably improved with an increase of polymer-cement ratio. These composites had a desirable pore size distribution against frost damage due to a small capillary pore volume. Continuous polymer film was able to form in higher than 15% of polymer cement ratio.

  • PDF