• 제목/요약/키워드: pore volume test

Search Result 116, Processing Time 0.025 seconds

Study of the Optimal Calcination Temperature of an Al/Co/Ni Mixed Metal Oxide as a DeNOx Catalyst for LNT

  • Jang, Kil Nam;Han, Kwang Seon;Hong, Ji Sook;You, Young-Woo;Suh, Jeong Kwon;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.21 no.3
    • /
    • pp.184-190
    • /
    • 2015
  • Most of LNT catalysts use noble metals such as Pt for low temperature NOx oxidation but there is an economic weakness. For the purpose of overcoming this, this study is to develop DeNOx catalyst for LNT excluding PGM (platinum group metal) such as Pt, Pd, Rh, etc. To do so, Al/Co/Ni catalyst selected as a preliminary test is used to study fundamental property and NOx’s conversion according to calcined temperature. Ultimately, that is, Al/Co/Ni mixed metal oxide which does not use PGM is selected and physicochemical characterization is performed by way of XRD, EDS, SEM, BET and ramp test and NOx conversion is also analyzed. This study shows that all samples consist of mixed oxides of spinel structure of Co2AlO4 and NiAl2O4 and have enough pore volume and size for redox. But as a result of NH3-TPD test, it is desired that calcined temperature needs to be maintained at 700 ℃ or lower. Also only samples which are processed under 500 ℃ satisfied NO and NOx conversion simultaneously through ramp test. Based on this study’s results, optimum calcined temperature for Al/Co/Ni=1.0/2.5/0.3 mixed metal oxide catalyst is 500 ℃.

Basic Research to Develop PGM-free DeNOx Catalyst for LNT (LNT용 PGM-free DeNOx 촉매 개발을 위한 기초연구)

  • Jang, Kil Nam;Han, Kwang Seon;Hong, Ji Sook;You, Young-Woo;Hwang, Taek Sung
    • Clean Technology
    • /
    • v.21 no.2
    • /
    • pp.117-123
    • /
    • 2015
  • This inquiry was conducted to develop DeNOx catalyst for LNT. In order to develop appropriate catalysts, four catalysts, which do not use PGM (Platinum Group Metal), were carefully selected : Al/Co/Mn, Al/Co/Ni/Mn, Al/Co/Mn/Ca, Al/Co/Ni mixed metal oxides during preliminary experiments. Also, XRD, EDS, SEM, BET and TPD tests were carried as well to evaluate both physicochemical properties of such four catalysts. As a result of the experiment, four catalysts were composed of spinel-shaped crystals and had more than enough pore volume and size to have oxidation-reduction reaction of NOx gases. Additionally, through TPD test, all four types of catalysts were proved to possibly have an oxidation-reduction acid site and NO oxidation activities similar to commercial catalysts. Based on the results above, if we have further change in the composition components and active ingredients according to the catalysts that were chosen in this investigation, then we are more welcomed to expect to have an enhanced DeNox catalyst for LNT.

Evaluation of Surface Water-preventing Materials on Stabilization of Contaminants in Tailings (광물찌꺼기에 함유된 오염물질의 안정화를 위한 표면 차폐재의 성능 평가)

  • Kim, Young-Kyu;Jung, Myung-Chae;Kim, Jung-Yul;Kim, Yoo-Sung;Lee, Jin-Soo;Park, Kwan-In
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.4
    • /
    • pp.53-61
    • /
    • 2011
  • This study examined evaluation on stabilization of major and trace elements in tailings by various surface water-preventing materials. Six columns were filled with tailings of the Sinlim mine, then covered with tailings only, compacted soils, clay, soil-bentonite mixture, pozzolan and bentonite mat. After injection of artificial rain water, the leachate was sampled with times (3, 6, 9 and 12 pore volume) and analysed for major (Ca, Na, Mg, K) and trace elements (As, Cd, Cu, Pb, Zn) by ICP-AES. With exception to pozzolan type, the pH values of leachate from the other types became stabilized from 5.5 to 7.5, and EC (electric conductivity) of leachate from them decreased with times. For the pozzolan type, however, the pH and EC of leachate increased with time due to its alkalinity producing system. Concentrations of most major and trace elements in leachate decreased and stabilized with time. Consequently, soil-bentonite mixed cover shows the best ability of water-preventing and reducing mobility of elements in tailings site.

A Study on the Self-Weight Consolidation Procedure of Very Soft Ground Reclaimed by Dredging Clayey Soil (연약한 준설 매립 점성토지반의 자중압밀 과정에 관한 연구)

  • 김형주;오근엽
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.129-138
    • /
    • 1999
  • This study is performed for the development of a field monitoring and test technique both of self-weight and hydraulic consolidation by which the soil parameters of dredge-reclaimed clay can be obtained effectively. The field monitoring development and tests mentioned above make it possible to reproduce the process of the self-weight consolidation from settling to reclaimed soft ground. The experimental research is mainly focussed on the characteristics of self-weight consolidation of dredged clayey soil. And theoretical study has pointed out the limits in the application of Terzaghi's one dimensional consolidation theory in interpreting reclaimed clayey ground. Furthermore, a finite difference analysis has been made on the basis of Mikasa s self-weight consolidation theory which takes the problems of Terzaghi's theory into consideration. The relationships between specific volume, effective stress, and the coefficient of permeability of Kunsan reclaimed clayey soil have been obtained by laboratory tests. On the other hand, through the field monitoring, pore pressure, total pressure, and water levels have been measured after pouring. The results of these experiments have been analyzed, and compared with those from Terzaghi's method and the finite difference analysis of Mikasa's self-weight consolidation theory. In conclusion, the measured settlements is comparatively consistent with Mikasa's self-weight consolidation theory rather than Terzaghi's consolidation theory.

  • PDF

Strength and Durability of Polymer Modified Mortar according to Monomer Ratio of Methyl Methacrylate and Butyl Acrylate (MMA/BA의 단량체 비에 따른 폴리머 시멘트 모르타르의 강도 및 내구성)

  • Mun, Kyung-Ju;Hyung, Won-Gil
    • Polymer(Korea)
    • /
    • v.32 no.6
    • /
    • pp.603-609
    • /
    • 2008
  • The purpose of this study is to clarify the effect of the monomer ratio on properties of the polymer-modified mortars using methyl methacrylate-butyl acrylate (MMA/BA) latexes, and to obtain basic data necessary to develop appropriate latexes for cement modifiers. From the test results, the total pore volume of polymer-modified mortars using MMA/BA latexes is linearly reduced with an increase in the bound MMA content and increased in the polymer-cement ratio. In general, the superior flexural and compressive strength of polymer-modified mortars using MMA/BA latexes is obtained at a bound MMA content of 70 or 80 percent and a polymer-cement ratio of 15%. And, the water absorption and chloride ion penetration depth are greatly affected by the polymer-cement ratio rather than the bound MMA content.

Material Properties of Repair Mortar Considering Accelerator Type and Curing Conditions (급결제 종류 및 양생조건을 고려한 보수용 모르타르의 재료특성)

  • Shin, Seung-Bong;Kim, Gyu-Yong;Nam, Jeong-Soo;Shin, Kyoung-Su;Lee, Bo-Kyeong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.299-306
    • /
    • 2019
  • In general, repair mortar is used to rehabilitate underground communities, but difficulties are encountered in the execution of long-term construction due to spatial co-operatives. In this study, the engineering properties of repair mortar according to the curing condition and accelerator type were reviewed. The results showed that the aluminate, alkali-free and calcium-aluminate precipitates in the water curing conditions showed higher compressive strength at the beginning of age than mortar specimens under air curing conditions, and increased. Especially in CA and AF test specimen with cement mineral quick setting, a large amount of ettringite products were observed compared with AL, thus reducing the pore volume and increasing the strength of the compound by micro-filling effect were found.

Experimental study of graphene oxide on wollastonite induced cement mortar

  • Sairam, V.;Shanmugapriya, T.;Jain, Chetan;Agrahari, Himanshu Kumar;Malpani, Tanmay
    • Advances in concrete construction
    • /
    • v.12 no.6
    • /
    • pp.479-490
    • /
    • 2021
  • Present research is mainly focused on, microstructural and durability analysis of Graphene Oxide (GO) in Wollastonite (WO) induced cement mortar with silica fume. The study was conducted by evaluating the mechanical properties (compressive and flexural strength), durability properties (water absorption, sorptivity and sulphate resistance) and microstructural analysis by SEM. Cement mortar mix prepared by replacing 10% ordinary portland cement with SF was considered as the control mix. Wollastonite replacement level varied from 0 to 20% by weight of cement. The optimum replacement of wollastonite was found to be 15% and this was followed by four sets of mortar specimens with varying substitution levels of cementitious material with GO at dosage rates of 0.1%, 0.2%, 0.3% and 0.4% by weight. The results indicated that the addition of up to 15%WO and 0.3% GO improves the hydration process and increase the compressive strength and flexural strength of the mortar due to the pore volume reduction, thereby strengthening the mortar mix. The resistance to water penetration and sulphate attack of mortar mixes were generally improved with the dosage of GO in presence of 15% Wollastonite and 10% silica fume content in the mortar mix. Furthermore, FE-SEM test results showed that the WO influences the lattice framework of the cement hydration products increasing the bonding between silica fume particles and cement. The optimum mix containing 0.3% GO with 15% WO replacement exhibited extensive C-S-H formation along with a uniform densified structure indicating that calcium meta-silicate has filled the pores.

Consolidation Characteristics of Soft Ground in Suction Drain Method (석션드레인공법이 적용된 연약지반의 압밀특성에 관한 사례 분석)

  • Kim, Byung Il;Kim, Do Hyung;Kim, Soo Sam;Han, Sang Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6C
    • /
    • pp.287-294
    • /
    • 2009
  • Suction Drain Method is a relatively new technique to improve soft ground using vacuum pressure which can be directly applied to the soft ground through drains that the pore water pressure around them are decreased without changing total stress. This can accelerate volume changes and increase strength of the ground. This paper shows the results of field test of the suction drain method applied at dredged and reclaimed clay. To evaluate the improvement effects of soft ground by the suction drain method, this paper analyzed real-time field measurements to the results of the laboratory tests and numerical analysis. The comparisons of the settlement and shear strength between suction drain method and surcharge preloading method show possibilities for replacement of the preloading methods. The settlements by suction drain method were 2.3 times larger and undrained shear strength were 300%~400% higher than surcharge method. Moreover, the water content is decreased about 30% and the preconsolidation pressure is increased about $0.52kgf/cm^2$.

Characteristics of Titanium Dioxide-Impregnated Fibrous Activated Carbon and Its Application for Odorous Pollutant (이산화티타늄 담지 섬유형 활성탄소의 특성 및 악취오염물질 제어를 위한 응용)

  • Jo, Wan-Kuen;Hwang, Eun-Song;Yang, Sung-Bong
    • Clean Technology
    • /
    • v.17 no.1
    • /
    • pp.48-55
    • /
    • 2011
  • The application of fibrous activated carbon (FAC)-titanium dioxide ($TiO_2$) hybrid system has not been reported yet for the control of malodorous dimethyl sulfide (DMS) at residential environmental levels. Accordingly, the current study was designed not only to characterize this hybrid system using x-ray diffraction method, particulate surface measurement and Fourier transform Infrared (FTIR) method, but also to evaluate its adsorptional photocatalytic activity (APA) for the DMS removal. The physical/surface characteristics of FAC-$TiO_2$ which was prepared in this study suggested that the hybrid material might have certain APA for DMS. The Brunauer-Emmett-Teller (BET) specific area, total pore volume, micropore volume and mesopore volume decreased all as the $TiO_2$ amounts coated on FAC increased, whereas the reverse was true for average pore diameter. $TiO_2$ coated onto FAC did not influence the adsorptional activity of FAC for the DMS input concentration of 0.5 ppm. The APA test of the hybrid material presented that the initial removal efficiencies of DMS were 93, 78, 71 and 57% for the flow rates of 0.5, 1.0, l.5 and 2.0 L/min, respectively, and they decreased somewhat 2 h after the experiment started and kept almost constant for the rest experimental period. Under this pseudo-equilibrium condition, the DMS removal efficiencies were 78, 58, 53 and 36% for the four flow rates, respectively. Meanwhile, there were no significant byproducts observed on the surfaces of the hybrid material. Consequently, this study suggests that, under the experimental conditions used in the present study, the hybrid material can be applied for DMS at residential environment levels without being interfered by any byproducts.

Leaching and mobility prediction of butachlor, ethoprophos, iprobenfos, isoprothiolane and procymidone in soils (Butachlor, ethoprophos, iprobenfos, isoprothiolane 및 procymidone의 토양 중 용탈과 이동성 예측)

  • Kim, Chan-Sub;Park, Kyung-Hun;Kim, Jin-Bae;Choi, Ju-Hyeon
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.300-308
    • /
    • 2002
  • This study was conducted to investigate the downward mobility of pesticides using soil colunms and to compare the experimental results with predicted values from Convective mobility test model. Five pesticides including ethoprophos, procymidone, iprobenfos, isoprothiolane, and butachlor were subjected to soil column leaching test for three types of cultivation soils. The concentrations of ethoprophos, iprobenfos, procymidone, isoprothiolane and butachlor leached from soil column of 30 cm depth ranged $0.74{\sim}3.61mg/mL,\;0.36{\sim}1.67mg/L,\;0.16{\sim}0.84mg/L,\;0.16{\sim}0.67mg/L$ and lower than 0.15 mg/L, respectively. Elution volume to reach the peak of ethoprophos, iprobenfos, procymidone, isoprothiolane and butachlor in the leachate ranged $2{\sim}4PV,\;3{\sim}10PV,\;5{\sim}13PV,\;4{\sim}14PV\;and\;19{\sim}61PV$, respectively. Convection times predicted by Convective mobility test model at standard conditions were $9{\sim}18$ days for ethoprophos, $17{\sim}35$ days for iprobenfos, $24{\sim}54$ days for isoprothiolane, $21{\sim}65$ days for procymidone and $105{\sim}279$ days for butachlor. Based on these convection times, ethoprophos was classified as mobile or most mobile, isoprothiolane and procymidone as moderately mobile or mobile and butachlor as slightly mobile. On the same conditions, convection times from the model were coincided with those from soil column test in most of the soil-pesticide combinations applied. Therefore, Convective mobility test model could be applied to predict convection times of pesticides.