• 제목/요약/키워드: pore morphology

검색결과 292건 처리시간 0.025초

알루미늄 양극산화 피막의 구조 및 형상이 자기적 특성에 미치는 영향 (Effects of structure and morphology of anodized Al thin film on magnetic properties)

  • 권용덕;박용수
    • 한국표면공학회지
    • /
    • 제26권2호
    • /
    • pp.45-54
    • /
    • 1993
  • In this study, magnetic properties of anodized Al film deposited with ferro-magnetic metals in the capacity of perpendicular magnetic recording media were measured and evaluated to find out the role of structure and morphology of the oxide films on magnetic characteristics. The object of this work was to present the conditions of magnetic thin film formation with more superior magnetic property. Anodizing was carried out under various conditions, and then the anodized film were electro-deposited with Co, Ni, Fe and their alloys. Coercive force and residual magnetization in perpendicular direction increased as the pore length of anodized film increased. It was attributed to the increase of the amount of depoisted metals and the ratio of length/diameter of pores. Morphology of anodized films in phosperic acid was not similar to that of sulfuric acid, and thin films in the former solution had perpendcular magnetic anisostropy because of large diameter, irregular length and distribution of the pores. It was found that magnetic properties of the thin films, which had doubled layer of two metals, were dominated by the metal electrodeposited on the surface of the anodized oxide films.

  • PDF

Investigation of Relationship between Etch Current and Morphology and Porosity of Porous Silicon

  • 장승현
    • 통합자연과학논문집
    • /
    • 제3권4호
    • /
    • pp.210-214
    • /
    • 2010
  • Relationship between etch current and morphology and porosity of porous silicon (PS) has been investigated. The gravimetric method is applied to measured the porosity of PS. As the current density increase, the silicon dissolution rate increases, resulting in a higher porosity and etching rate. The result shows that linear dependence of PS porosity and etching rate as a function of current density. The morphology of porous silicon was investigated by using cold field emission scanning electron micrograph (FE-SEM). The size of pores formed during anodization is predominantly controlled by the current density, with an increase in the pore size corresponding to an increase in the current density.

Hydroxyapatite/Polyacrylic Acid 균질복합체의 소결 특성 및 기계적 강도 (Sintering Behavior and Mechanical Strength of Hydroxyapatite/Polyacrylic Acid Homogeneous Composite)

  • 이병교;이석기;구광모;이미혜;이형동
    • 한국세라믹학회지
    • /
    • 제40권6호
    • /
    • pp.566-571
    • /
    • 2003
  • 합성 수산화아파타이트(HAp)와 바인더로서 폴리아크릴산(PAA)을 사용하여 공침법으로 조성비가 서로 다른 HAp/PAA균질복합체 4종을 제조하였고, 이 균질복합체를 냉간정수압법으로 성형 및 공기중에서 여러조건으로 소결하였다. HAp/PAA composite의 소결체는 XRD 및 U-IR로 결정성 및 구조를 조사하였고, 또한 소결시편은 만능재료시험기(UTM)로 압축강도를 측정하였으며, 파단된 소결시편의 표면은 SEM으로 관측하였다 HAp/PAA composite는 120$0^{\circ}C$ 및 3시간의 소결조건에서 부분적인 $\alpha$, $\beta$-tricalcium phosphate로 상전이가 일어났다. 소결체의 기공크기와 기공률은 각각 0.2~3.0 $\mu\textrm{m}$와 0.49~13.43% 범위였고, 소결시편의 압축강도는 36.6~58.2 MPa 범위로 나타났다. 이상의 결과로 부터 HAp/PAA composite의 소결체는 균일한 기공형태로 인해 우수한 압축강도를 가지는 미세다공성 HAp라고 설명할 수 있다.

알루미나 중공사막 제조 및 특성 분석 (Preparation and Characterization of α-alumina Hollow Fiber Membrane)

  • 채진웅;이홍주;박정훈
    • 멤브레인
    • /
    • 제26권3호
    • /
    • pp.212-219
    • /
    • 2016
  • 알루미나 분말이 분산된 고분자용액을 비용매 유도 상전이법으로 방사 및 소결하여 알루미나 중공사막을 제조하였다. 용매-비용매의 상호작용 속도에 따른 중공사막 기공 구조 형성을 확인하고, 특성을 분석하기 위해 dimethylsulfoxide (DMSO), dimethylacetamide (DMAc), triethylphosphite (TEP) 용매를 사용하여 방사액을 제조하였으며, 고분자 바인더로는 polyethersulfone (PESf), 첨가제로는 polyvinylpyrrolidone (PVP)를 사용하였다. 알루미나 중공사막의 기공 구조 변화를 확인하기 위해 SEM으로 중공사막 단면을 분석하였다. DMSO, DMAc 용매를 사용할 경우 지상 구조(finger-like structure)와 망상 구조(sponge-like structure)가 복합된 기공 구조가 나타났으며, TEP 용매를 사용할 경우 전체적으로 망상 구조를 가졌다. 기공 구조에 따른 중공사막의 특성을 확인하기 위해 기체투과도, 기공도 및 기계적 강도를 측정하였다. 망상 구조를 갖는 중공사막은 높은 기체 투과특성을 보였으며 지상 구조가 증가할수록 기체투과도가 감소하였다. 반대로 기계적 강도는 지상 구조가 발달할수록 증가하였다.

비용매 첨가제를 이용한 비대칭막의 제조 (Preparation of Asymmetric Membranes by Addition of Nonsolvent)

  • 김노원
    • 멤브레인
    • /
    • 제25권1호
    • /
    • pp.32-41
    • /
    • 2015
  • 용매 비용매 치환 상전이 공정과 증기 유도 상전이 공정을 결합하여 성능이 향상된 폴리술폰 정밀역과막을 제조하였다. 본 연구에서 제조된 비대칭막은 폴리술폰(고분자), 디메틸 포름아미드(용매), 폴리비닐리돈(친수성 고분자 첨가제), 폴리에틸렌글리콜(극성 고분자 액상 첨가제)로 이루어진 혼합 용액에 디메틸술폭사이드(극성 아프로틱 비용매), 물(극성 프로틱 비용매 첨가제)을 첨가하여 제막용 캐스팅 용액을 물과 이소프로판올 혼합용액에 침지하여 얻었다. 극성 아프로틱 비용매와 극성 프로틱 비용매의 첨가는 멤브레인의 구조를 제어하는데 유용한 방법이며 이를 습윤 공기를 캐스팅 용액에 노출시켜 준 응고상태를 만들어줌으로써 멤브레인의 내부 구조를 제어하고자 하였다. 또한 응고조의 조성을 물/이소프로판올의 혼합비를 통하여 조절하였다. 순수 투과도, 기공 크기 분포도, 표면 친수도 및 구조 분석이 이루어졌으며, 그 결과 평균 기공의 크기를 거의 $0.2{\mu}m$ 정도 향상시키는 효과를 가져왔으며 수 투과 유량 또한 1000-1800 LMH 정도 향상시키는 결과를 나타내었다.

주사전자현미경을 이용한 3종 화분포자류(花粉胞子類) 한약재(송화분(松花粉), 포황(蒲黃), 해금사(海金沙))의 미세형태 비교연구 (Comparative study on the external micro-morphology of 3 kinds of minute pollen and spore Herbs (Pini Pollen, Typhae Pollen, Lygodii Spora) utilizing scanning electron microscope)

  • 김영식;송준호;최고야;이금산;주영승
    • 대한본초학회지
    • /
    • 제35권1호
    • /
    • pp.9-18
    • /
    • 2020
  • Objectives : We tried to establish standards for genuine by discriminating 3 kinds of pollen and spore herbs that are highly to be mixed with each other. Using an scanning electron microscope, we prepare a standard for discriminating external morphological characters of minute herbs, thereby contributing to the stable supply of genuine herbal medicines. Methods : Standard samples were confirmed by literature review on external morphological characteristics of original plants and herbal medicines, and collection and identification of original plants. The herbal medicines on the market were purchased and classified with using naked eye observation and magnifier. Finally, micromorphological identifications were conducted using an scanning electron microscope. Results : 1. Pini Pollen was clearly distinguished by its relatively medium size and a pollen grain with two swollen reticulate sacci at both ends. The verrucate ornamentation on the exine surface of the corpus and a sunken leptoma germ pore may be used as a discrimination criteria. 2. Typhae Pollen was distinguished by its relatively small size and a saccus on the end of a pollen grain. Reticulate ornamentation of exine surface of the corpus, and a slightly clear ulcerate germ pore can be used as a discrimination criteria. 3. Lygodii Spora was distinguished by its relatively large triangular-ovate shape and trichotomous fissure. Verrucate-tuberculate ornamentation of exine surface and trilete aperture could be used as a discrimination criteria. Conclusion : These results indicate that the use of electron microscopy is very effective for discriminating the external morphology of minute herbal medicines.

Comparison of Soil Pore Properties between Anthropogenic and Natural Paddy Field Soils From Computed Tomographic Images

  • Chun, Hyen Chung;Jung, Ki-Yuol;Choi, Young Dae;Jo, Su-min;Lee, Sanghun;Hyun, Byung-Keun;Shin, Kooksik;Sonn, Yeonkyu;Kang, Hang-Won
    • 한국토양비료학회지
    • /
    • 제48권5호
    • /
    • pp.351-360
    • /
    • 2015
  • Human influence on soil formation has dramatically increased with human civilization and industry development. Increase of anthropogenic soils induced researches on the anthropogenic soils; classification, chemical and physical characteristics of anthropogenic soils and plant growth from anthropogenic soils. However there have been no comprehensive analyses on soil pore or physical properties of anthropogenic soils from 3 dimensional images in Korea. The objectives of this study were to characterize physical properties of anthropogenic paddy field soils by depth and to find differences between natural and anthropogenic paddy field soils. Soil samples were taken from two anthropogenic and natural paddy field soils; anthropogenic (A_c) and natural (N_c) paddy soils with topsoil of coarse texture and anthropogenic (A_f) and natural (N_f) paddy soils with topsoil of fine texture. The anthropogenic paddy fields were reestablished during the Arable Land Remodeling Project from 2011 to 2012 and continued rice farming after the project. Natural paddy fields had no artificial changes or disturbance in soil layers up to 1m depth. Samples were taken at three different depths and analyzed for routine physical properties (texture, bulk density, etc.) and pore properties with computer tomography (CT) scans. The CT scan provided 3 dimensional images at resolution of 0.01 mm to calculate pore radius size, length, and tortuosity of soil pores. Fractal and configuration entropy analyses were applied to quantify pore structure and analyze spatial distribution of pores within soil images. The results of measured physical properties showed no clear trend or significant differences across depths or sites from all samples, except the properties from topsoils. The results of pore morphology and spatial distribution analyses provided detailed information of pores affected by human influences. Pore length and size showed significant decrease in anthropogenic soils. Especially, pores of A_c had great decrease in length compared to N_c. Fractal and entropy analyses showed clear changes of pore distributions across sites. The topsoil layer of A_c showed more degradation of pore structure than that of N_c, while pores of A_f topsoil did not show significant degradation compared with those of N_f. These results concluded that anthropogenic soils with coarse texture may have more effects on pore properties than ones with fine texture. The reestablished paddy fields may need more fundamental remediation to improve physical conditions.

슬러리 코팅 공정으로 제조된 Fe 폼의 기공 특성에 미치는 Fe 및 Fe2O3 분말의 혼합 비율의 영향 (The Effect of Fe and Fe2O3 Powder Mixing Ratios on the Pore Properties of Fe Foam Fabricated by a Slurry Coating Process)

  • 최진호;정은미;박다희;양상선;한유동;윤중열
    • 한국분말재료학회지
    • /
    • 제21권4호
    • /
    • pp.266-270
    • /
    • 2014
  • Metal foams have a cellular structure consisting of a solid metal containing a large volume fraction of pores. In particular, open, penetrating pores are necessary for industrial applications such as in high temperature filters and as a support for catalysts. In this study, Fe foam with above 90% porosity and 2 millimeter pore size was successfully fabricated by a slurry coating process and the pore properties were characterized. The Fe and $Fe_2O_3$ powder mixing ratios were controlled to produce Fe foams with different pore size and porosity. First, the slurry was prepared by uniform mixing with powders, distilled water and polyvinyl alcohol(PVA). After slurry coating on the polyurethane(PU) foam, the sample was dried at $80^{\circ}C$. The PVA and PU foams were then removed by heating at $700^{\circ}C$ for 3 hours. The debinded samples were subsequently sintered at $1250^{\circ}C$ with a holding time of 3 hours under hydrogen atmosphere. The three dimensional geometries of the obtained Fe foams with an open cell structure were investigated using X-ray micro CT(computed tomography) as well as the pore morphology, size and phase. The coated amount of slurry on the PU foam were increased with $Fe_2O_3$ mixing powder ratio but the shrinkage and porosity of Fe foams were decreased with $Fe_2O_3$ mixing powder ratio.

Pharmaceutical Potential of Gelatin as a pH-responsive Porogen for Manufacturing Porous Poly(d,l-lactic-co-glycolic acid) Microspheres

  • Kim, Hyun-Uk;Park, Hong-Il;Lee, Ju-Ho;Lee, Eun-Seong;Oh, Kyung-Taek;Yoon, Jeong-Hyun;Park, Eun-Seok;Lee, Kang-Choon;Youn, Yu-Seok
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권4호
    • /
    • pp.245-250
    • /
    • 2010
  • Porous poly(lactic-co-glycolic acid) microspheres (PLGA MS) have been utilized as an inhalation delivery system and a matrix scaffold system for tissue engineering. Here, gelatin (type A) is introduced as an extractable pH-responsive porogen, which is capable of controlling the porosity and pore size of PLGA microspheres. Porous PLGA microspheres were prepared by a water-in-oil-in-water ($w_1/o/w_2$) double emulsification/solvent evaporation method. The surface morphology of these microspheres was examined by varying pH (2.0~11.0) of water phases, using scanning electron microscopy (SEM). Also, their porosity and pore size were monitored by altering acidification time (1~5 h) using a phosphoric acid solution. Results showed that the pore-forming capability of gelatin was optimized at pH 5.0, and that the surface pore-formation was not significantly observed at pHs of < 4.0 or > 8.0. This was attributable to the balance between gel-formation by electrostatic repulsion and dissolution of gelatin. The appropriate time-selection between PLGA hardening and gelatin-washing out was considered as a second significant factor to control the porosity. Delaying the acidification time to ~5 h after emulsification was clearly effective to make pores in the microspheres. This finding suggests that the porosity and pore size of porous microspheres using gelatin can be significantly controlled depending on water phase pH and gelatin-removal time. The results obtained in this study would provide valuable pharmaceutical information to prepare porous PLGA MS, which is required to control the porosity.

γ-Al2O3로부터 가역과정을 경유한 AlO(OH) 나노콜로이드의 합성 (Synthesis of AlO(OH) Nano Colloids from γ-Al2O3 via Reversible Process)

  • 조현란;김숙현;박병기
    • 한국세라믹학회지
    • /
    • 제46권3호
    • /
    • pp.288-294
    • /
    • 2009
  • The platelet AlO(OH) nano colloids were prepared by hydrothermal reaction of the $\gamma-Al_2O_3$ obtained with dehydration of $\gamma$-AlO(OH) and dilute $CH_3COOH$ solution. In hydrothermal reaction process, reversible reaction was accompanied between $\gamma-Al_2O_3$ and AlO(OH), and hydrothermal reaction temperature, hydrothermal reaction time and $CH_3COOH$ concentration had an effect on the crystal structure, surface chemical property, surface area, pore characteristics and crystal morphology of the AlO(OH) nano colloid particles. In this study, it was investigated to the hydrothermal reaction condition of the AlO(OH) nano colloid for using catalyst support, heat resisting agent, adsorbents, binder, polishing agent and coating agent. The crystal structure, surface area, pore volume and pore size of the platelet AlO(OH) nano colloids were investigated by XRD, TEM, TG/DTA, FT-IR and $N_2$ BET method in liquid nitrogen temperature.