• Title/Summary/Keyword: pore analysis

Search Result 1,250, Processing Time 0.025 seconds

The Elastic Behaviour of Metal Powder Compacts

  • Prado, J. M.;Riera, M. D.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.181-182
    • /
    • 2006
  • Cylindrical specimens with different levels of density have been submitted to uniaxial compression tests with loading and unloading cycles. The analysis of the elastic loadings shows a non linear elasticity which can be mathematically represented by means of a potential law. Results are explained by assuming that the total elastic strain is the contribution of two terms one deriving from the hertzian deformation of the contacts among particles and another that takes into account the linear elastic deformation of the powder skeleton. A simple model based in an one pore unit cell is presented to support the mathematical model.

  • PDF

A Study on the Stabilization of Coal Ash Ground by Geotechnical Engineering Analysis Cam-clay model for Deformation Analysis of Coal Ash Ground (토질공학적 해석방법에 의한 석탄회 폐기물지반의 안정처리에 관한 연구 -지반변형해석을 위한 Cam-clay model을 중심으로)

  • 천병식
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.81-92
    • /
    • 1998
  • Coal ash from thermal power plants has been produced in large quantity and discarded uselessly, However, it is possible to supply construction material properly by utilizing the coal ash as construction material. In this study, the applicable model and its applicability for deformation analysis of coal ash fill and reclamation ground are studied. Camflay model gives complete constitutive law which illustrates deformation and pore water pressure while soil is loaded under the various stresses at drained and undrained conditions. The merit of proposed model which is acquired from laboratory tests is that only a few soil parameters are available. The whole parameters of Camflay model are obtained by typical mechanical test and CV triaxial test on the sample with optimum mixing ratio( i.e. fly ash : bottom ash=5:5) Then the results from proposed numerical analysis are compared with laboratory results. The differences between laboratory test and numerical analysis are negligible. Parameters deter mined from laboratory tests are useful as a basic data for deformation analysis of coal ash reclamation ground using Camflay model.

  • PDF

Liquefaction Evaluation by One-Dimensional Effective Stress Analysis Using UBC3D-PLM Model (UBC3D-PLM 모델을 이용한 1차원 유효응력해석에 의한 액상화 평가)

  • Jung-Hoe Kim;Hyun-Sik Jin
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.151-167
    • /
    • 2023
  • This study compares the revised method in loose saturated sandy ground where the LNG storage tank will be installed with an evaluation method by one-dimensional effective stress analysis using the UBC3D-PLM model. Various laboratory and field tests were conducted to establish the parameters necessary for evaluation. The revised liquefaction evaluation method using the seismic response analysis result and N value from standard penetration testing evaluated the possibility of liquefaction as high, but assessment using effective stress analysis, which can consider various liquefaction resistance factors, found the site to be somewhat stable against liquefaction. One-dimensional finite element analysis using UBC3D-PLM modeling facilitated easier assessment of stability against liquefaction than the other methods and minimized the area required for reinforcement against liquefaction. In addition, it is expected that two-and three-dimensional numerical analysis considering the foundation of the LNG storage tank can identify the seismic design and behavior when liquefaction occurs.

The evaluation of correction methods and effect of kaolinite on quantitative analysis of quartz in respirable dust by FTIR direct-on-filter method (직접필터법을 이용한 석영 분석시 고령석의 영향 및 보정방법 평가)

  • Phee, Young Gyu
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.19 no.1
    • /
    • pp.1-7
    • /
    • 2009
  • To establish the Fourier-Transform Infra-Red spectrophotometry(FTIR) Direct-On-Filter(DOF) technique as a useful analytical method for quartz in respirable dust samples, an influence of the kaolinite should be corrected. Respirable dust, created in a dust chamber containing the standard material of quartz and kaolinite were collected using a cyclone equipped with a 25 mm, $0.8\;{\mu}m$ pore size DM filter as a collection medium. This study was designed to compare three methods of correction for kaolinite when quantifying the content of quartz, including the least square, the optimum choice and the spectral subtraction methods. The content of quartz in the respirable dust samples was overestimated by 6.2% when mixed with kaolinite(35.5% by weight). The content of quartz containing kaolinite(72.8% by weight) were overestimated by 32%. The spectral subtraction method underestimated the quartz content by 1.5%, while the other two correction methods, the optimum choice and the least square method, overestimated the quartz content by 1.9% to 6.4% and 0.04 to 1.1%, respectively. The results of this study are suggested that, when correcting for effects of kaolinite on quantitative analysis of quartz in respirable dust by FTIR direct-on-filter method, the least square method produce the most unbiased results be compared with those of other correction methods.

Hydrothermal crystallization and secondary synthesis of vanadium containing zeolites (바나듐함유 제올라이트의 수열결정화 및 2차처리합성)

  • Kim, Geon-Joong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.3
    • /
    • pp.437-448
    • /
    • 1997
  • The substitution of vanadium atoms into the zeolite framework structure could be applied to the large pore zeolites by means of modified treatments as well as direct hydrothermal synthesis. The incorporation of V into the zeolite framework was demonstrated by instrumental analysis techniques. The result of X-ray diffraction analysis showed that the unit cell parameters increased after incorporation of vanadium into the zeolitic lattice, indicating that the replacement of Si by the larger V atoms could cause a slight expansion in the unit cell. In addition, the results of FTIR, Uv-Vis and Si-MAS-NMR spectra strongly support the incorporation of V into the zeolite framework. Acid leaching of aluminum in zeolites can provide a vacant position in the lattice for the insertion of vansdium by secondary hydrothermal treatment.

  • PDF

Enhanced mass balance Tafel slope model for computer based FEM computation of corrosion rate of steel reinforced concrete coupled with CO2 transport

  • Hussain, Raja Rizwan
    • Computers and Concrete
    • /
    • v.8 no.2
    • /
    • pp.177-192
    • /
    • 2011
  • This research paper aims at computer based modeling of carbonation induced corrosion under extreme conditions and its experimental verification by incorporating enhanced electrochemical and mass balance equations based on thermo-hygro physics with strong coupling of mass transport and equilibrium in micro-pore structure of carbonated concrete for which the previous research data is limited. In this paper the carbonation induced electrochemical corrosion model is developed and coupled with carbon dioxide transport computational model by the use of a concrete durability computer based model DuCOM developed by our research group at concrete laboratory in the University of Tokyo and its reliability is checked in the light of experiment results of carbonation induced corrosion mass loss obtained in this research. The comparison of model analysis and experiment results shows a fair agreement. The carbonation induced corrosion model computation reasonably predicts the quantitative behavior of corrosion rate for normal air dry relative humidity conditions. The computational model developed also shows fair qualitative corrosion rate simulation and analysis for various pH levels and coupled environmental actions of chloride and carbonation. Detailed verification of the model for the quantitative carbonation induced corrosion rate computation under varying relative conditions, different pH levels and combined effects of carbonation and chloride attack remain as scope for future research.

Classification of Alkali Activated GGBS Mortar According to the Most Suitable Usage at the Construction Site

  • Thamara, Tofeti Lima;Ann, Ki Yong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.56-63
    • /
    • 2020
  • The usage of OPC-free alkali activated ground granulated blast furnace slag(GGBS) mortar has been widely studied on the previous years, due to its advantages on sustainability, durability and workability. This paper brings a new view, aiming to classify the best application in situ for each mortar, according to the type and activator content. By this practical implication, more efficiency is achieved on the construction site and consequently less waste of materials. In order to compare the different activators, the following experiments were performed: analysis of compressive strength at 28 days, setting time measured by needles penetration resistance, analysis of total pore volume performed by MIP and permeability assessment by RCPT test. In general, activated GGBS had acceptable performance in all cases compared to OPC, and remarkable improved durability. Following the experimental results, it was confirmed that each activator and different concentrations impose distinct outcome performance to the mortar which allows the classification. It was observed that the activator Ca(OH)2 is the most versatile among the others, even though it has limited compressive strength, being suitable for laying mortar, coating/plaster, adhesive and grouting mortar. Samples activated with NaOH, in turn, presented in general the most similar results compared to OPC.

Performance evaluation of β-glucan treated lean clay and efficacy of its choice as a sustainable alternative for ground improvement

  • Kumara, S. Anandha;Sujatha, Evangelin Ramani
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.413-422
    • /
    • 2020
  • The choice of eco-friendly materials for ground improvement is a necessary way forward for sustainable development. Adapting naturally available biopolymers will render the process of soil stabilization carbon neutral. An attempt has been made to use β-glucan, a natural biopolymer for the stabilization of lean clay as a sustainable alternative with specific emphasis on comprehending the effect of confining stresses on lean clay through triaxial compression tests. A sequence of laboratory experiments was performed to examine the various physical and mechanical characteristics of β-glucan treated soil (BGTS). Micro-analysis through micrographs were used to understand the strengthening mechanism. Results of the study show that the deviatoric stress of 2% BGTS is 12 times higher than untreated soil (UTS). The micrographs from Scanning Electron Microscopy (SEM) and the results of the Nitrogen-based Brunauer Emmett Teller (N2-BET) analysis confirm the formation of new cementitious fibres and hydrogels within the soil matrix that tends to weld soil particles and reduce the pore spaces leading to an increase in strength. Hydraulic conductivity (HC) and compressibility reduced significantly with the biopolymer content and curing period. Results emphases that β-glucan is an efficient and sustainable alternative to the traditional stabilizers like cement, lime or bitumen.

Numerical simulation of set-up around shaft of XCC pile in clay

  • Liu, Fei;Yi, Jiangtao;Cheng, Po;Yao, Kai
    • Geomechanics and Engineering
    • /
    • v.21 no.5
    • /
    • pp.489-501
    • /
    • 2020
  • This paper conducts a complicated coupled effective stress analysis of X-section-in-place concrete (XCC) pile installation and consolidation processes using the dual-stage Eulerian-Lagrangian (DSEL) technique incorporating the modified Cam-clay model. The numerical model is verified by centrifuge data and field test results. The main objective of this study is to investigate the shape effect of XCC pile cross-section on radial total stress, excess pore pressure and time-dependent strength. The discrepancies of the penetration mechanism and set-up effects on pile shaft resistance between the XCC pile and circular pile are discussed. Particular attention is placed on the time-dependent strength around the XCC pile shaft. The results show that soil strength improved more significantly close to the flat side compared with the concave side. Additionally, the computed ultimate shaft resistance of XCC pile incorporating set-up effects is 1.45 times that of the circular pile. The present findings are likely helpful in facilitating the incorporation of set-up effects into XCC pile design practices.

Thermal, Hydraulic and Mechanical Analysis for Disposal of Spent Nuclear Fuel in Saturated Rock Mass in the KBS-3 Concept. (KBS-3 개념에 따른 포화된 암반내 사용후핵연료 처분을 위한 열, 수리, 역학적 특성 해석)

  • 장근무;황용수;김선훈
    • Tunnel and Underground Space
    • /
    • v.7 no.1
    • /
    • pp.39-50
    • /
    • 1997
  • Reference concepts for the disposal of spent nuclear fuel and the current status of underground rock laboratory were studied. An analysis to simulate the deep disposal of spent nuclear fuel in saturated rock mass was conducted. Main input parameters for numerical study were determined based on the KBS-3 concept. A series of results showed that the temperature distribution around a cavern reached the maximum value at about 10 years after the emplacement of spent fuel. The maximum temperature at the surface of canister was more than about 12$0^{\circ}C$ at about 4 years. This temperature was not much higher than the temperature criteria to meet the performance criteria of an artificial barrier in the KBS-3 concept. The maximum upward displacement due to the heat generation of spent fuel was about 0.9cm at about 10 years after the emplacement of spent fuel. It turned out that the vertical displacement became smaller with the decrease in heat generation of a canister. The quantity of groundwater inflow into a disposal tunnel increased by about 1.6 times at 20 years after the emplacement of spent fuel with the increase of pore pressure around a cavern.

  • PDF