• Title/Summary/Keyword: pore analysis

Search Result 1,250, Processing Time 0.029 seconds

Adsorption properties of surface - modified activated carbon (활성탄의 표면 구조 변화에 따른 흡착 특성 연구)

  • 김정렬;서문원;신창호;김영호;이근회;지상운
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.2
    • /
    • pp.191-197
    • /
    • 1994
  • Relationships between surface structure and adsorption properties of smoke components were investigated in surface-modified and un-modified activated carbon filter cigarettes. Commercially available activated carbon was treated with nitric acid and hydrogen peroxide as oxidant, and their pore volume, surface structure, BET surface area, pore type and size were studied. BET surface area and pore volume were decreased by nitric acid treatment, but median pore diameter was 8.1 $\AA$, which showed better development of pore compared with that of un-modified activated carbon, 6.9 $\AA$. In case of hydrogen peroxide treatment, BET surface area and pore volume were increased. Their pore was found to be a slit type based on V-t plot analysis. Neutralization capacities for bases of different strength (NaHCO3, Na2CO3, NaOEt and NaOH) showed that the majority of the acidic surface groups are of weak acidity. Modification of the activated carbon surface led to a slight change in adsorption properties when analyzing the smoke of triple-filter cigarette with surface-modified activated carbon.

  • PDF

Pore Characteristics of Porous Alumina Ceramics Fabricated from Boehmite Hydrosol and Alumina Particles (Boehmite 수화졸의 알루미나로 제조한 다공성 알루미나 세라믹스의 기공특성)

  • 오경영
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.547-555
    • /
    • 1996
  • Porous alumina ceramics were fabricated by pseudo-boehmite phydosol-gel process within/without commercial $\alpha$-alumina particles average 1 and 40 micron respectively. The pore characteristics of fired specimens were studied by the measurement of bulk density total porosity thyermal analysis pore volume pore distribution BET area XRD and SEM. with increasing of firing temperature pore volume and BET surface area were decreased and the average pore size was increased to approximately 146$\AA$ upto 80$0^{\circ}C$ by de-watering of [OH] and formation of $\alpha$-alumina. The fired relative density of the alumina-dispersed specimen with average 1 micron particle was increased with the amounts of dispersed particle by bimodal packing theory which is compared to the ones of specimen including of average 40 micron particle. It was confirmed that the percola-tion threshold in porous ceramics with coarser particle (40 micron) has formed between the transformed-alumina from hydrogel and dispersed-alumina of above 50 vol% particle and the total porosity was increased at the threshold point above.

  • PDF

Realistic pore structure of Portland cement paste: experimental study and numerical simulation

  • Ma, Hongyan;Li, Zongjin
    • Computers and Concrete
    • /
    • v.11 no.4
    • /
    • pp.317-336
    • /
    • 2013
  • In this study, the pore structure of Portland cement paste is experimentally characterized by MIP (mercury intrusion porosimetry) and nitrogen adsorption, and simulated by a newly developed status-oriented computer model. Cement pastes with w/c=0.3, 0.4 and 0.5 at ages from 1 day to 120 days are comprehensively investigated. It is found that MIP cannot generate valid pore size distribution curves for cement paste. Nevertheless, nitrogen adsorption can give much more realistic pore size distribution curves of small capillary pores, and these curves follow the same distribution mode. While, large capillary pores can be effectively characterized by the newly developed computer model, and the validity of this model has been proved by BSE imaging plus image analysis. Based on the experimental findings and numerical simulation, a hypothesis is proposed to explain the formation mechanism of the capillary pore system, and the realistic representation of the pore structure of hydrated cement paste is established.

Dissipation Pattern of Excess Pore Pressure after Liquefaction in Saturated Sand Deposits (포화된 모래지반의 액상화후 과잉간극수압 소산양상)

  • 하익수;박영호;김명모
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.90-97
    • /
    • 2003
  • The purpose of this study is to understand the dissipation pattern of excess pore pressure after liquefaction which governs the post-liquefaction behavior of liquefied sand deposits. 1-g shaking table tests were carried out on 5 different kinds of sands, all of which had high liquefaction potentials. During the tests excess pore pressure at various depths, and surface settlements were measured. The measured curve of the excess pore pressure dissipation was simulated using the solidification theory, and from the analysis of the velocity of dissipation, the dissipation pattern of excess pore pressure after liquefaction was examined. The dissipation velocity of excess pore pressure after liquefaction had a linear correlation with the effective grain size ( $D_{10}$) divided by the coefficient of uniformity ( $C_{u}$), and the increase in the initial relative density of the ground played a role in shifting this correlation curve toward an increased dissipation velocity. From the correlation, an approximate method was recommended for prediction of the dissipation curve of excess pore pressure after liquefaction in saturated sand deposits.s.s.

  • PDF

Basic Analysis on Fractal Characteristics of Cement Paste Incorporating Ground Granulated Blast Furnace Slag (고로슬래그 미분말 혼입 시멘트 페이스트의 프랙탈 특성에 관한 기초적 분석)

  • Kim, Jiyoung;Choi, Young Cheol;Choi, Seongcheol
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.101-107
    • /
    • 2017
  • This study aimed to conduct the basic analysis on the fractal characteristics of cementitious materials. The pore structure of cement paste incorporating ground granulated blast furnace slag (GGBFS) was measured using mercury intrusion porosimetry (MIP) and the fractal characteristics were investigated using different models. Because the pore structure of GGBFS-blended cement paste is an irregular system in the various range from nanometer to millimeter, the characteristics of pore region in the different scale may not be adequately described when the fractal dimension was calculated over the whole scale range. While Zhang and Li model enabled analyzing the fraction dimension of pore structure over the three divided scale ranges of micro, small capillary and macro regions, Ji el al. model refined analysis on the fractal characteristics of micro pore region consisting of micro I region corresponding to gel pores and micro II region corresponding to small capillary pores. As the pore size decreased, both models suggested that the pore surface of micro region became more irregular than macro region and the complexity of pores increased.

Surface Milling for the Study of Pore Structure in Shale Reservoirs (셰일 저류층 내 공극 구조 연구를 위한 표면 밀링)

  • Park, Sun Young;Choi, Jiyoung;Lee, Hyun Suk
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.4
    • /
    • pp.419-426
    • /
    • 2020
  • Understanding the pore structure including pore shape and connectivity in unconventional reservoirs is essential to increase the recovery rate of unconventional energy resources such as shale gas and oil. In this study, we found analysis condition to probe the nanoscale pore structure in shale reservoirs using Focused Ion Beam (FIB) and Ion Milling System (IMS). A-068 core samples from Liard Basin are used to probe the pore structure in shale reservoirs. The pore structure is analyzed with different pretreatment methods and analysis condition because each sample has different characteristics. The results show that surface milling by FIB is effective to obtain pore images of several micrometers local area while milling a large-area by IMS is efficient to observe various pore structure in a short time. Especially, it was confirmed that the pore structure of rocks with high content of carbonate minerals and high strength can be observed with milling by IMS. In this study, the analysis condition and process for observing the pore structure in the shale reservoirs is established. Further studies are needed to perform for probing the effect of pore size and shape on the enhancement of shale gas recovery.

Computer Tomography as a Tool for Physical Analysis in an Anthropogenic Soil

  • Chun, Hyen Chung;Park, Chan Won;Sonn, Yeon Kyu;Cho, Hyun Joon;Hyun, Byung Keun;Song, Kwan Cheol;Zhang, Yong Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.549-555
    • /
    • 2013
  • Human influence on soil formation has dramatically increased as the development of human civilization and industry. Increase of anthropogenic soils induced research of those soils; classification, chemical and physical characteristics and plant growth of anthropogenic soils. However there have been no reports on soil pore properties from the anthropogenic soils so far. Therefore the objectives of this study were to test computer tomography (CT) to characterize physical properties of an anthropogenic paddy field soil and to find differences between natural and anthropogenic paddy field soils. Soil samples of a natural paddy field were taken from Ansung, Gyeonggi-do (Ansung site), and samples of an anthropogenic paddy field were from Gumi in Gyeongsangnam-do (Gasan) where paddy fields were remodeled in 2011-2012. Samples were taken at three different depths and analyzed for routine physical properties and CT scans. CT scan provided 3 dimensional images to calculate pore size, length and tortuosity of soil pores. Fractal analysis was applied to quantify pore structure within soil images. The results of measured physical properties (bulk density, porosity) did not show differences across depths and sites, but hardness and water content had differences. These differences repeated within the results of pore morphology. Top soil samples from both sites had greater pore numbers and sizes than others. Fractal analyses showed that top soils had more heterogeneous pore structures than others. The bottom layer of the Gasan site showed more degradation of pore properties than ploughpan and bottom layers from the Ansung site. These results concluded that anthropogenic soils may have more degraded pore properties as depth increases. The remodeled paddy fields may need more fundamental remediation to improve physical conditions. This study suggests that pore analyses using CT can provide important information of physical conditions from anthropogenic soils.

Evaluation of Pore Size Distribution of Berea Sandstone using X-ray Computed Tomography (X-ray CT를 이용한 베레아 사암의 공극크기분포 산정)

  • Kim, Kwang Yeom;Kim, Kyeongmin
    • The Journal of Engineering Geology
    • /
    • v.24 no.3
    • /
    • pp.353-362
    • /
    • 2014
  • Pore structures in porous rock play an important role in hydraulic & mechanical behaviour of rock. Porosity, size distribution and orientation of pores represent the characteristics of pore structures of porous rock. While effective porosity can be measured easily by conventional experiment, pore size distribution is hard to be quantified due to the lack of corresponding experiment. We assessed pore size distribution of Berea sandstone using X-ray CT image based analysis combined with associated images processing, i.e., image filtering, binarization and skeletonization subsequently followed by the assessment of local thickness and star chord length. The aim of this study is to propose a new and effective way to evaluate pore structures of porous rock using X-ray CT based analysis for pore size distribution.

Mapping Particle Size Distributions into Predictions of Properties for Powder Metal Compacts

  • German, Randall M.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.704-705
    • /
    • 2006
  • Discrete element analysis is used to map various log-normal particle size distributions into measures of the in-sphere pore size distribution. Combinations evaluated range from monosized spheres to include bimodal mixtures and various log-normal distributions. The latter proves most useful in providing a mapping of one distribution into the other (knowing the particle size distribution we want to predict the pore size distribution). Such metrics show predictions where the presence of large pores is anticipated that need to be avoided to ensure high sintered properties.

  • PDF

The Analysis of the Micro-structure of Oxygen Plasma Treated PET Using a Nitrogen Porosimeter (Nitrogen Porosimeter를 이용한 산소 플라즈마 처리 PET의 미세구조 분석)

  • 김병인;김태경;조규민;임용진
    • Textile Coloration and Finishing
    • /
    • v.11 no.6
    • /
    • pp.1-6
    • /
    • 1999
  • The porosities of PET fibers were investigated using a nitrogen porosimeter according to oxygen plasma treatment and dyeing with a disperse dye, and they were discussed in terms of the change of internal micro-structure of the PET fiber. The total pore volume, surface area and average pore size of the plasma treated PET fibers increased expectably compared with the untreated sample. The PET fibers treated with oxygen plasma and then dyed with a disperse dye were increased significantly in the surface area and the total pore volume comparing with those of plasma treated only, but decreased in the average pore size. The increase of the surface area, after dyeing, of the plasma treated PET fibers was due to addition of the surface area of the dye itself to that of the PET fiber. The increase of the total pore volume of the plasma treated PET fibers by dyeing, which is the opposite result to the general idea that the pore volume of fibers would be reduced by occupation of dye molecules in the pores, could be explained by the free-volume model. This is that the amorphous region in the fiber expanded by occupation of dye molecules, and the marginal space surrounding dyes was generated as many smaller pores, and the decrease of the average pore size of the dyed sample also could be explained The decrease of the average pore size was caused by the splitting of a larger pore into smaller pores.

  • PDF