• Title/Summary/Keyword: pore analysis

Search Result 1,250, Processing Time 0.023 seconds

Analysis of Ship Groundings on Soft Sea Beds

  • Simonsen, B. Cerup;Redersen, P. Terndrup
    • Journal of Ship and Ocean Technology
    • /
    • v.1 no.1
    • /
    • pp.35-47
    • /
    • 1997
  • The consequences associated with ships running aground depend very much on the soil characteristics of the sea bed and the geometrical shape of the ship bow. The penetration into the sea bed depends on these factors and the penetration is an important factor for the ship motion because it influences the ship heave and pitch motions as well as the friction between the ship and the soil. In this paper a rational calculation model is presented for the sea bed soil reaction forces on the ship bottom. The model is based on the assumption that the penetration of the ship bow generates a flow of pore water through the grain skeleton of the soil. The flow is governed by Darcy\`s law and it is driven by the pressure of the pore water at the bow. In addition to this pore water pressure, the bow is subjected to the effective stresses in the grain skeleton at the bow surface. These stresses are determined by the theory of frictional soils in rupture. Frictional stresses on the bow surface are assumed to be related to the normal pressure by a simple Coulomb relation. The total soil reaction as a function of velocity and penetration is found by integration of normal pressure and frictional stresses over the surface of the bow. The analysis procedure is implemented in a computer program for time domain rigid body analysis of ships running aground and it is verified in the paper through a comparison of calculated stopping lengths, effective coefficients of friction, and sea bed penetrations with corresponding experimental results obtained by model tests as well as large, scale tests.

  • PDF

Sensitivity Analysis of Initial Pressure and Upper Control Limit on the Pressure Decay Test for Membrane Integrity Evaluation (압력손실시험을 이용한 막 완결성 평가에서 초기압력 및 UCL 도출인자 민감도 분석)

  • Lee, Joohee;Hong, Seungkwan;Hur, Hyunchul;Lee, Kwangjae;Choi, Youngjune
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.6
    • /
    • pp.793-800
    • /
    • 2008
  • Recently domestic drinking water industry has recognized membrane-based technology as a promising alternative for water treatment. To ensure successful application of membrane processes, the integrity of membrane systems should be maintained. According to US EPA guidance, the pressure decay test based on the bubble point theory is recommended to detect any membrane defection of which size is close to the smallest diameter of Cryptosporidium oocysts, $3{\mu}m$. Proper implementation of the pressure decay test is greatly affected by initial test pressure, and the interpretation of the test results is associated with upper control limit. This study is conducted to investigate various factors affecting determination of initial test prtessure and upper control limit, including membrane-based parameters such as pore shape correction factor, surface tension and contact angle, and system-based parameters, such as volumetric concentration factor and total volume of system. In this paper, three different hollow fibers were used to perform the pressure decay test. With identical initial test pressure applied, their pressure decay tendency were different from each other. This finding can be explained by the micro-structure disparity of those membranes which is verified by FESEM images of those membranes. More specifically, FESEM images revealed that three hollow fibers have asymmetry, deep finger, shallow finger pore shape, respectively. In addition, sensitivity analysis was conducted on five parameters mentioned above to elucidate their relation to determination of initial test pressure and upper control limit. In case of initial pressure calculation, the pore shape correction factor has the highest value of sensitivity. For upper control limit determination, system factors have greater impact compared to membrane-based parameters.

Characteristics of Structure Settlement due to Urban Railway Construction on Reclaimed Land (해안매립지반의 도시철도 시공에 따른 구조물 침하 특성 분석)

  • Shin, Eun-Chul;Rim, Yong-Kwan;Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.11 no.1
    • /
    • pp.23-33
    • /
    • 2012
  • The stability of urban railway foundation can be a problem due to the excessive settlement. The settlement at the base of railway is monitored by the installed settlement gauges. The piezometer and pore water pressure measurement device are installed to measure the variation of pore water pressure and ground water table during the continuous pullout of sheet piles which were used for the braced cut. The settlement of railway is predicted with using the computer program CAIN RDA. The input data for the numerical analysis are obtained from the field soil exploration data and soil properties. The surcharged load from landscaping over the ground surface and the weight of train are taken into account for the estimation of settlement. As a result of numerical analysis, the range of settlement for six different Sites is from 5.94 cm to 12.77 cm. Thus, the settlement level at Site 2 is occurred 12.77 cm which is higher than the allowable settlement of 10 cm.

A Study on Determination of the Degree of Consolidation and Time Factor Considering Site Ground Characteristics (현장 지반특성을 고려한 압밀도 및 시간계수 결정에 관한 연구)

  • Choi, Min-Ju;Kim, Hung-Nam;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.23-32
    • /
    • 2022
  • This study is conducted to minimize the problems caused by the difference between the settlement and settlement time of the one-dimensional consolidation analysis by the Terzaghi's consolidation theory, which is generally used in domestic soft soil design, from the settlement and settlement time measured at the field site. Consolidation-time factor considering the field site characteristics can be determined using the relationship among the degree of consolidation, settlement time, and time factor, the time-settlement curve measured at the field is reverse- analysis using a numerical-analysis technique to reproduce the same consolidation behavior as in the field. Time-settlement and time-excessive pore water pressure data when the same consolidation behavior as the site is reproduced Consolidation-time factor of the soil of Songsan Green City by settlement and excess pore water pressure was calculated using the settlement and excess pore water pressure for each settlement time. If the results of this study use the Terzaghi consolidation-time factor, which does not consider the consolidation characteristics of the soft ground target area, it is difficult to determine the end time of the soft ground during construction. It is necessary to use the established settlement-time factor.

A Hydro-Mechanical Basic Study on the Effect of Shut-in on Injection-Induced Seismic Magnitude (유체 주입 중단이 유발 지진 규모에 미치는 영향에 대한 수리역학적 기초 연구)

  • Yim, Juhyi;Min, Ki-Bok
    • Tunnel and Underground Space
    • /
    • v.32 no.3
    • /
    • pp.203-218
    • /
    • 2022
  • A hydro-mechanical study was performed to analyze the relationship between the magnitude of injection-induced seismicity and shut-in. In hydraulic analysis, the suspension of fluid injection makes the pore pressure gradient smaller while the pore pressure at the pressure front can reach the critical value for several hours after shut-in, which leads to the additional slip with wider area than during injection. The hydro-mechanical numerical analysis was performed to model the simplified fault system, and simulated the largest magnitude earthquake during shut-in stage. The effect of the abrupt suspension of fluid injection on the large magnitude earthquake was investigated in comparison with the continuous injection. In addition to the pore pressure distribution, it was found that the geometry of multiple faults and the stress redistribution are also important in evaluating the magnitude of the induced seismicity.

A Basic Study on the Piping Stability Monitoring Method of Weir Structure (보 구조물의 파이핑 안정성 모니터링 방안 기초 연구)

  • Ha, Ik-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.9
    • /
    • pp.51-61
    • /
    • 2023
  • The study aims to select an indicator that can monitor the piping stability of the foundation of a weir structure and suggest a piping stability monitoring method using the selected indicator. Based on the results from previous studies and the results of numerical seepage analysis, the change in pore water pressure in the foundation ground of the weir was selected as an indicator for piping monitoring. Considering the state in which the pore water pressure gauges are installed in operating weirs, seepage analyses were performed according to various upstream water level conditions for each case where one or two gauges were installed at the bottom of the weir. A piping monitoring method was presented based on the analysis results for each of these cases. In addition, the proposed monitoring method was shown to be effective by providing an example of a trial application to an operating weir.

Comparison of Compressibility between the Oedometer Tests with the Field Measurements in Namak Clay (계측결과를 이용한 남악점토의 압축특성 비교)

  • Kim, Dongbeum;Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.5
    • /
    • pp.15-20
    • /
    • 2008
  • Compressibility of the marine clay was mainly studied velocity of consolidation and numerical analysis by this time but studies of reevaluated from the field measurement data was a little. For last three years, areal fills and extensive field instrumentations including settlement and pore water pressure were performed in the site of the Youngsan River estuary site, South Korea. From the settlement data, field consolidation curves for sub-layers were reconstructed. Effective surcharge loads during the staged loadings were calculated using the fill heights and the excess pore water pressures in the ground. In the numerical analysis (PLAXIS), prefabricated vertical drains were also simulated. Laboratory, field, and numerical analysis showed good agreements in compressibility. Due to different conditions and limitations of the clay was the same range of the oedometer tests.

  • PDF

Numerical Study of Unsaturated Infinite Slope Stability regarding Suction Stress under Rainfall-induced Infiltration Conditions

  • Song, Young-Suk;Hwang, Woong-Ki
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Numerical stability analysis of an unsaturated infinite slope under rainfall-induced infiltration conditions was performed using generalized effective stress to unify both saturated and unsaturated conditions The soil-water characteristic curve (SWCC) of sand with a relative density of 75% was initially measured for both drying and wetting processes. The hydraulic conductivity function (HCF) and suction stress characteristic curve (SSCC) were subsequently estimated. Under the rainfall-induced infiltration conditions, transient seepage analysis of an unsaturated infinite slope was performed using the finite element analysis program, SEEP/W. Based on these results, the stability of an unsaturated infinite slope under rainfall-induced infiltration conditions was examined in relation to suction stress. According to the results, the negative pore-water pressure and water content within the slope soil changed over time due to the infiltration. In addition, the variation of the negative pore-water pressure and water content led to a variation in suction stress and a subsequent change in the slope's factor of safety during the rainfall period.

Preparation and Characterization of Polyacrylonitrile-based Porous Carbon Nanofibers Activated by Zinc Chloride (염화아연에 의해 활성화된 폴리아크릴로나이트릴계 다공성 탄소나노섬유의 제조 및 특성)

  • Lee, Hye-Min;Bae, Kyong-Min;Kang, Hyo-Rang;An, Kay-Hyeok;Kim, Hong-Gun;Kim, Byung-Joo
    • Applied Chemistry for Engineering
    • /
    • v.24 no.4
    • /
    • pp.370-374
    • /
    • 2013
  • The effects of zinc chloride addition on pore development of porous carbon nanofibers prepared by polyacrylonitrile (PAN)/ N,N'-dimethylformamide (DMF) (10 wt%) electrospinning were investigated. The change of morphological and structural modification by zinc chloride activation was investigated by a scanning electron microscopy (SEM) analysis. $N_2$ adsorption isotherm characteristics at 77 K were confirmed by Brunauer-Emmett-Teller (BET) and Horvath-Kawazoe (H-K) equations, and the curves showed the Type I mode in the International Union of Pore and Applied Chemistry (IUPAC) classification, indicating that lots of micropores exist in the sample. In addition, specific surface areas and total pore volumes of porous carbons prepared by the zinc chloride activation were determined as 600~980 $m^2/g$ and 0.24~0.40 $cm^3/g$, respectively. As experimental results, many holes or demolished structures were found on the fiber surfaces after the zinc chloride activation as confirmed by a SEM analysis. It was also observed that various pore sizes were found to be depended on the adding content of zinc chloride in PAN/DMF solution in this system.

Numerical Analysis on Liquefaction Countermeasure of Seabed under Submerged Breakwater Using Concrete Mat Cover (for Irregular Waves) (콘크리트매트 피복을 이용한 잠제하 해저지반에서의 액상화 대책공법에 관한 수치해석 (불규칙파 조건))

  • Lee, Kwang-Ho;Ryu, Heung-Won;Kim, Dong-Wook;Kim, Do-Sam;Kim, Tae-Hyung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.1
    • /
    • pp.20-35
    • /
    • 2017
  • In the case of the seabed around and under gravity structures such as submerged breakwater is exposed to a large wave action long period, the excess pore pressure will be significantly generated due to pore volume change associated with rearrangement soil grains. This effect will lead a seabed liquefaction around and under structures as a result of the decrease in the effective stress, and eventually the possibility of structure failure will be increased. The study of liquefaction potential for regular waves had already done, and this study considered for irregular waves with the same numerical analysis method used for regular waves. Under the condition of the irregular wave field, the time and spatial series of the deformation of submerged breakwater, the pore water pressure (oscillatory and residual components) and pore water pressure ratio in the seabed were estimated and their results were compared with those of the regular wave field to evaluate the liquefaction potential on the seabed quantitatively. Although present results are based on a limited number of numerical simulations, one of the study's most important findings is that a safer design can be obtained when analyzing case with a regular wave condition corresponding to a significant wave of the irregular wave.