• Title/Summary/Keyword: pore 형성

Search Result 432, Processing Time 0.024 seconds

Synthesis of Sulfonated Polyethersulfone Membrane Material for Ultrafiltration by Heterogeneous Sulfonation and Fouling Reduction Effect (불균일계 술폰화에 의한 한외여과용 폴리에테르 술폰 막소재 합성과 fouling 감소효과)

  • 김인철;최중구;최남석;김종호;탁태문
    • Membrane Journal
    • /
    • v.8 no.4
    • /
    • pp.210-219
    • /
    • 1998
  • Sulfonated poly(ether sulfone)(SPES) of various ion exchange capacity (IEC) was prepared by heterogeneous sulfonation with chlorosulfonic acid (CSA) to make hydrophilic ultrafiltration membrane for reducing fouling. The effects of CSA concentration, reaction temperature and reaction time has been investigated. The reaction was effective when the temperature is above 10$\circ$C and the CSA concentration is over 0.05 mol, although polymer chain has been significantly degraded. The substitution of sulfonic acid groups was characterized by FTIR and $^1$H-NMR. Transport properties and fouling test have been conducted to the modified SPES ultrafiltration rnembranrs by heterogeneors method. Membranes were obtained using DCM and PVP as a non-solvent and pore forming agent, respectively. Flux reduced and rejection increased with ion exchange capacity. Finger-like structure was disappeared and the thickness of top layer was increased. Dense membrane by non-solvent DCM and porous membrane by pore forming agent PVP was prepared. Fouling was reduced with increasing ion exchange capacity because of hydrophilicity.

  • PDF

Fabrication of nanoporous ceramic membrane for water treatment (수처리용 나노스케일 다공성 세라믹 멤브레인 제조)

  • Han, Hyuk Su;Lee, Ho Jun;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.2
    • /
    • pp.77-81
    • /
    • 2019
  • Recently, as the problem of environmental pollution emerges, various methods of eco-friendly water treatment method are being developed. Polymer membranes, which are currently leading the market, are inexpensive, but have many problems in terms of chemical resistance and durability. Thus, ceramic membrane has been attracted great attention as high-efficiency water treatment due to excellent durability and chemical resistant. In this study, ceramic membranes were developed via pore structure, size control, and surface treatment. The pore size of the membrane was controlled through the formation of $ZrO_2$ and $TiO_2$ coating films. Tape casting and sol-gel process were used to form a ceramic coating film with nanopores on the surface of the membrane. Microstructure analysis of ceramic membrane and pore size analysis of the coating film were conducted and the change of water treatment characteristics was observed.

Inhibitory Effect of $Zn^{+2}$ on Tolaasin-induced Hemolysis ($Zn^{+2}$에 의한 Tolaasin의 용혈활성 저해효과)

  • Cho, Kwang-Hyun;Kim, Sung-Tae;Kim, Young-Kee
    • Applied Biological Chemistry
    • /
    • v.49 no.4
    • /
    • pp.281-286
    • /
    • 2006
  • Tolaasin, a pore-forming toxin, is a 1,985 Da peptide produced by Pseudomonas tolaasii and causes a brown blotch disease on cultivated mushrooms. Tolaasin forms pores on the plasma membrane of various cells including fungi, bacteria, plant as well as erythrocytes, and destroys cell structure. $Zn^{+2}$ has been known to block the tolaasin activity by an unknown mechanism. Thus, we investigated the inhibitory effects of $Zn^{+2}$ on the tolaasin-induced hemolysis to understand the molecular mechanism of tolaasin-induced pore formation. $Zn^{+2}$ and $Cd^{+2}$ inhibited the tolaasin-induced hemolysis in a dose-dependent manner and their Ki values were 170 ${\mu}M$ and 20 mM, respectively. The effect of $Zn^{+2}$ was reversible since the subsequent addition of EDTA chelates $Zn^{+2}$ and removes the inhibitory effect of $Zn^{+2}$. When an osmotic protectant, PEG 2000, was added, the tolaasin-induced hemolysis was not observed. After the removal of osmotic protectant by centrifugation, resuspended erythrocytes with fresh medium were immediately hemolyzed, while the addition of $Zn^{+2}$ prevented from hemolysis, implying that tolaasin-induced pores on the membrane were already formed in the medium containing osmotic protectant. These results suggest that $Zn^{+2}$ inhibits the activity of tolaasin pores and it has minor effects on the membrane binding of tolaasin and the formation of pore.

Stability increase in the activity of tolaasin inhibitors under reducing conditions (환원 조건에서 톨라신 저해 물질 활성의 안정성 증가)

  • Yun, Yeong-Bae;Kim, Min-Hee;Kim, Young-Kee
    • Journal of Applied Biological Chemistry
    • /
    • v.60 no.4
    • /
    • pp.351-355
    • /
    • 2017
  • Tolaasin, peptide toxin produced by Pseudomonas tolaasii, causes a brown blotch disease on the cultivated mushrooms. Tolaasin peptides form membrane pores and disrupt cellular membrane structure. Molecular actions of tolaasin consist of the aggregation of peptide molecules, binding to the cell membrane, and formation of membrane pores. Therefore, the inhibitions of any of these actions are able to suppress the blotch disease. We have isolated and identified several tolaasin inhibitors (named tolaasin inhibitory factors, TIF) from food additives. TIFs were able to suppress the blotch-formation by the pathogen inoculated to the mushrooms. In this study, TIFs were incubated under various conditions and their activities for the inhibition of tolaasin-induced hemolytic activity were investigated. Since TIFs are unsaturated carbon compounds, they were sensitive to the air exposure and light irradiation. In the anaerobic conditions, TIFs were stable and their activities were decreased by 10% for three months. However, near 90% of TIF activity was suppressed by two weeks in the presence of air and sun light. Temperature did not show any significant effects on the activity of TIF, since storages at 5, 25, $45^{\circ}C$ did not show any difference. Therefore, for the stable storage of TIF compounds, container should be designed to be dark and air-tight.

Characteristics of Pore Development for Activated Carbon Fiber from Poly Acrylo-nitrile (1)-Stabilization and Carbonization- (PAN 계 활성탄소 섬유의 세공발달 특성 (1)-안정화(安定化) 및 탄화(炭化)-)

  • Park, Jong-Hak;Cho, Byung-Rin
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.147-154
    • /
    • 1991
  • Thermogravimetric measurements have been carried out to investigate the stabilization and carbonization of copolymer of acrylonitrile(95 wt %) and methyl acrylate(5 wt %) at various heating rates. The cyclization and dehydrogenation during the stabilization were important factors to determine pore development in the carbonization process. The pore and the specific surface area during the carbonization began to develope at the temperature higher than $400^{\circ}C$.

  • PDF

Computer Simulation for Microstructure Development in Porous Sintered Compacts (다공질 소결체의 조직형성에 관한 컴퓨터 시뮬레이션)

  • Shin, Soon-Ki;Matsubara, Hideaki
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.213-219
    • /
    • 2006
  • A Monte Carlo simulation based on Potts model in a three dimensional lattice was studied to analyze and design microstructures in porous sintered compacts such as porosity, pore size, grain (particle) size and contiguity of grains. The effect of surface energy of particles and the content of additional fine particles to coarse particles on microstructure development were examined to obtain fundamentals for material design in porous materials. It has been found that the larger surface energy enhances sintering (necking) of particles and increases contiguity and surface energy does not change pore size and grain size. The addition of fine particles also enhances sintering of particles and increases contiguity, but it has an effect on increment of pore size and grain size. Such a simulation technique can give us important information or wisdom for design of porous materials, e.g., material system with high surface energy and fine particle audition are available for higher strength and larger porosity in porous sintered compacts with applications in an automobile.

유기실리카와 나노기공형성 수지의 상용성 변화에 의한 나노기공의 구조 변화

  • 차국헌;최연승;김상율;진문영
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.52-52
    • /
    • 2002
  • Recently, nanoporous low-k materials using porogen (pore generating material) template method have gained much attraction due to the feasible advantage of dielectric constant decrease with the increase of porogen content, which is burning out and making air void by thermal curing. In nanoporous thin films, further, control of pore size and its distribution is very important to retain suitable thermal, mechanical and electrical properties. In this study, nanoporous low-k films were prepared with MTMS-BTMSE copolymer and porogen. The effect of interaction of copolymer matrix and porogen on pore size and distribution was comparatively to investigate with molecular structure and end functional group. The characterization of nanoporous thin film prepared was also performed using various techniques including NMR, GPC, Ellipsometer, FE-SEM, TGA, and FT-IR.

  • PDF

정밀여과막의 공경 및 분포 제어

  • 홍재민;하성룡;강용수;안규홍;김은영
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1994.10a
    • /
    • pp.76-76
    • /
    • 1994
  • 일반적으로 다공성 비대칭막은 상분리법에 의하여 제조하는데, 분리막을 구성하는 고분자를 적절한 용매에 녹인 제막용액을 일정한 두께로 casting하고 이를 비용매에 담가서 binodal/spinodal decomposition이 일어나도록 하여 제조한다. 이 방법으로 제조된 다공성 분리막의 성능은 표면층에 존재하는 pore의 크기와 그 분포 및 porosity에 의해 결정된다. Casting된 고분자 용액을 비용매에 침지시켜 다공성막을 형성시킬 경우 막의 표면과 비용매 사이의 계면에서 용매와 비용매의 교환이 일어난다. 용매-비용매 교환이 일어나면 제막된 고분자 용액내의 비용매의 양이 증가되어 열역학적으로 불안정해져 상분리가 일어난다. 그런데, 이때 용매-비용매의 교환이 매우 빠른 속도로 일어나므로 pore-size 및 그의 분포를 조절하기가 매우 어렵다. 표면층의 pore size와 분포를 조절하기 위하여 그간 고분자 용액내의 고분자 농도조절, 첨가제의 사용, 비용매의 조성을 바꾸는 등의 여러가지 방법에 대한 연구가 진행되어 왔다.

  • PDF

Effect of $ZnCl_2$ on Formation of Carbonized Phenol Resin Anode

  • Kim Han-Joo;Hong Ji-sook;Son Won-Ken;Park Soo-Gil;Oyama Noboru
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.2
    • /
    • pp.85-89
    • /
    • 2000
  • For replacing Li metal at Lithium ion Battery(LIB) system, we used carbon powder material which prepared by Pyrolysis of Phenol resin as starting material. It became amorphous carbon by Pyrolysis through it's self condensation by thermal treatment. Amorphous carbon can be doped with Li intercalation and deintercalation because it has wide interlayer. However, it has a problem with structural destroy due to weak carbon-carbon bond. So, we used $ZnCl_2$ as the pore-forming agent. This inorganic salt was used together with the resin serves not only as the pore-forming agent to form open pores, which grow into a three-dimensional network structure in the cured material, but also as the microstructure-controlling agent to form a loose structure doped with bulky dopants. We used SEM in order to find to difference of structure, and can calculate the distance of interlayer by XRD analysis. CV test showed oxidation and reduction.

Preparation of Chemical and Fouling Resistant Semicrystalline Membranes (내식성, 내오염성 결정성 고분자 분리막의 제조)

  • 유종범;송기국;김성수
    • Polymer(Korea)
    • /
    • v.24 no.3
    • /
    • pp.342-349
    • /
    • 2000
  • Hollow fiber membranes were prepared via thermally-induced phase separation process followed by stretching process from isotactic polypropylene and soybean oil system. Various operating parameters were examined in terms of their effects on the structure variation and performances of the membrane, and were optimized. Melt viscosity of the melt sample had influence on the formation of the microfibrils, and addition of nucleating agent increased the nucleation density to enhance the interspherulitic pore formation by stretching. Annealing the membrane at its stretched state relaxed the stress induced by stretching and helped the membrane maintain the stretched structure without shrinking. Solid-liquid Phase separation is more prevalent when the nucleating agent was added, and coagulation bath temperature determined the nucleation density, which affected the pore formation by stretching. In the absence of nucleating agent, nucleation was not effective and liquid-liquid phase separation governed the structure formation, which showed the opposite trend to that of the case with nucleating agent.

  • PDF