• Title/Summary/Keyword: population ecological parameters

Search Result 46, Processing Time 0.024 seconds

Genetic Variability Based on Tandem Repeat Numbers in a Genomic Locus of 'Candidatus Liberibacter asiaticus' Prevalent in North East India

  • Singh, Yanglem Herojit;Sharma, Susheel Kumar;Sinha, Bireswar;Baranwal, Virendra Kumar;Singh, N. Bidyananda;Chanu, Ngathem Taibangnganbi;Roy, Subhra S.;Ansari, Meraj A.;Ningombam, Arati;Devi, Ph. Sobita;Das, Ashis Kumar;Singh, Salvinder;Singh, K. Mamocha;Prakash, Narendra
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.644-653
    • /
    • 2019
  • The genetic variability of 'Candidatus Liberibacter asiaticus' (CLas) population associated with huanglongbing (HLB) disease of citrus in North Eastern (NE) region of India, a geographically locked region, and home for the diversity of many citrus species was analyzed on the basis of tandem repeat numbers (TRN) in variable CLIBASIA_01645 genomic loci. Fifty-five CLas strains sampled from different groves of NE Hill (NEH) region of India were in single amplicon group, but there was remarkable genetic variability in TRNs. The TRN in HLB-associated CLas strains varied from 0-21 and two novel repeat motifs were also identified. Among the NE population of CLas, TRN5 and TRN9 were most frequent (total frequency of 36.36%) followed by TRN4 (14.55%) and TRN6, TNR7 with a frequency of 12.73% each. Class II type CLas genotypes (5 < TRN ≤ 10) had highest prevalence (frequency of 60.00%) in the samples characterized in present study. Class I (TRN ≤ 5) genotypes were second highest prevalent (29.09%) in the NEH region. Further analysis of genetic diversity parameters using Nei's measure (H value) indicated wide genetic diversity in the CLas strains of NE India (H value of 0.58-0.86). Manipur CLas strains had highest genetic variability (0.86) as compared to Eastern, Southern and Central India. The R10 values (TRN ≤ 10/TRN > 10) of NE CLas population was 10.43 (73/7), higher from other regions of India. Present study conclusively reported the occurrence of high genetic variability in TRN of CLas population in North East Indian citrus groves which have evolved to adapt to the specific ecological niche.

Population Trends and temperature-Dependent Development of Pear Psylla, Cacopsylla pyricola(Foerster) (Homoptera: Psyllidae) (꼬마배나무이(Cacopsylla pyricola(Foerster)) 발생소장 및 온도별 발육기간)

  • 김동순;조명래;전흥용;임명순;이준호
    • Korean journal of applied entomology
    • /
    • v.39 no.2
    • /
    • pp.73-82
    • /
    • 2000
  • Two Psyllidae species of Cacopsylla pyricola (Foerster) and C. pyrisuga (Foerster)damaging pear trees have been reported in Korea. However, their ecological characteristics and damagepatterns have not been evaluated yet. To establish basic control measures of C. pyricola, field phenology,overwintering ecology, seasonal fluctuation and temperature-dependent development of C. pyricola wereexamined. C. pyricola overwintered under the bark scale of pear trees as winter form adults and theymoved to fruiting twigs from mid-February. Honeydew produced by C. pyricola nymphs and adults asthey feed caused serious black sooty mold on leaves and fruits. The seasonal occurrence of C. pyricolawas different every year. In 1993, characterized by cold temperature and heavy precipitation, C. pyricolapopulation was maintained highly during growing season. However, the population was decreased rapidlyfrom early July in 1994, year of hot and dry weather condition. In 1995, year of average temperature, thedensity of C. pyricola population was decreased during hot months of July and August, and rebuilt up inSeptember and October. The development periods of C. pyricola eggs were 13.33 days at 15"C, 9.32 daysat 20$^{\circ}$C, 7.82 days at 25"C, 6.60 days at 30$^{\circ}$C, and 7.75 days at 35$^{\circ}$C. The development periods ofnymphs were 33.75 days at 15OC, 23.77 days at 20$^{\circ}$C, 15.21 days at 25"C, and 17.40 days at 30$^{\circ}$C. Theirdevelopment periods and mortalities were increased in higher temperatures. The parameters of nonlineardevelopment model, Weibull and linear development models of Cacopsylla pyricola were estimated.models of Cacopsylla pyricola were estimated.

  • PDF

Stock Assessment and Management of Turban shell, Turbo (Batillus) cornutus Lightfoot, 1786 in Jeju Coastal waters, Korea (제주도산 소라 Turbo (Batillus) cornutus Lightfoot, 1786의 자원평가 및 관리방안 연구)

  • Kwon, Dae-Hyeon;Chang, Dae-Soo;Lee, Seung-Jong;Koo, Jun-Ho;Kim, Byung-Yeob
    • The Korean Journal of Malacology
    • /
    • v.26 no.4
    • /
    • pp.291-296
    • /
    • 2010
  • Samples of Turbo (Batillus) cornutus Lightfoot, 1786 in Jeju Island were collected from September 2009 to May 2010. Population ecological parameters and stock assessment of the turban shell were determined, based on the length and age composition data from 2000 to 2009 and ecological parameters. Instantaneous coefficient of total mortality (Z) of turban shell was estimated to be 2.2062/year. The estimated instantaneous coefficient of natural mortality (M) was 0.874/year. The age of turban shell at its first capture ($t_c$) was 2.636 year. Yield-per-recruit were estimated under harvest strategies that based on $F_{max}$, $F_{0.1}$, $F_{35%}$, and $F_{40%}$ was 10.44 g, 1.87 g, 6.53 g and 7.46 g.

Stock Assessment and Optimal Catch of Blackfin Flounder Glyptocephalus stelleri in the East Sea, Korea (한국 동해안 기름가자미(Glyptocephalus stelleri)의 자원평가 및 적정어획량 추정)

  • Sohn, Myoung Ho;Yang, Jae Hyeong;Park, Jeong-Ho;Lee, Haewon;Choi, Young Min;Lee, Jae Bong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.46 no.5
    • /
    • pp.598-606
    • /
    • 2013
  • The blackfin flounder Glyptocephalus stelleri is a commercially important species in the East Sea of Korea, but its catches and biomass have decreased gradually in recent years. This study estimated the optimal catch (acceptable biological catch, ABC) for the effective management of this species by estimating population ecology parameters and the stock biomass of blackfin flounder in the East Sea of Korea. The estimated instantaneous coefficient of total mortality (Z) of blackfin flounder was 1.0542/year, the survival rate (S) was 0.3485, and the instantaneous coefficient of natural mortality (M) was 0.3637/year. From the values of S and M, the instantaneous coefficient of fishing mortality (F) was calculated to be 0.6905/year. The age at first capture was 1.304 years, and the total length was 11.5 cm at that time. On the basis of these parameters, the annual biomass was estimated by a biomass-based cohort analysis using annual catch data in weight by year for 1991-2012 in the East Sea of Korea. The annual biomass peaked in 1997 at about 12,800 mt and then subsequently declined continuously to a level of 10,500 mt in 2004 and to 9,800 mt in 2011 and 2012. The maximum sustainable yield and $F_{0.1}$ were estimated as 3,547 mt and 0.3595/year, respectively. Using these estimations, the ABC was estimated to be 3,571 mt in tier 5, 3,397 mt in tier 4, and 2,622 mt in tier 3.

Multiple-biometric Attributes of Biomarkers and Bioindicators for Evaluations of Aquatic Environment in an Urban Stream Ecosystem and the Multimetric Eco-Model (도심하천 생태계의 수환경 평가를 위한 생지표 바이오마커 및 바이오인디케이터 메트릭 속성 및 다변수 생태 모형)

  • Kang, Han-Il;Kang, Nami;An, Kwang-Guk
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.6
    • /
    • pp.591-607
    • /
    • 2013
  • The objectives of the study were to evaluate the aquatic environment of an urban stream using various ecological parameters of biological biomarkers, physical habitat quality and chemical water quality and to develop a "Multimetric Eco-Model" ($M_m$-E Model) for the ecosystem evaluations. For the applications of the $M_m$-E model, three zones including the control zone ($C_Z$) of headwaters, transition zone ($T_Z$) of mid-stream and the impacted zone ($I_Z$) of downstream were designated and analyzed the seasonal variations of the model values. The biomarkers of DNA, based on the comet assay approach of single-cell gel electrophoresis (SCGE), were analyzed using the blood samples of Zacco platypus as a target species, and the parameters were used tail moment, tail DNA(%) and tail length (${\mu}m$) in the bioassay. The damages of DNA were evident in the impacted zone, but not in the control zone. The condition factor ($C_F$) as key indicators of the population evaluation indicator was analyzed along with the weight-length relation and individual abnormality. The four metrics of Qualitative Habitat Evaluation Index (QHEI) were added for the evaluations of physical habitat. In addition, the parameters of chemical water quality were used as eutrophic indicators of nitrogen (N) and phosphorus (P), chemical oxygen demand (COD) and conductivity. Overall, our results suggested that attributes of biomarkers and bioindicators in the impacted zone ($I_Z$) had sensitive response largely to the chemical stress (eutrophic indicators) and also partially to physical habitat quality, compared to the those in the control zone.

Genetic Variation of Korean Fir Sub-Populations in Mt. Jiri for the Restoration of Genetic Diversity (유전다양성 복원을 위한 지리산 구상나무 아집단의 유전변이)

  • Ahn, Ji Young;Lim, Hyo-In;Ha, Hyun-Woo;Han, Jingyu;Han, Sim-Hee
    • Journal of Korean Society of Forest Science
    • /
    • v.106 no.4
    • /
    • pp.417-423
    • /
    • 2017
  • To provide a ecological restoration strategy considering genetic diversity of Abies koreana in Mt. Jiri, the genetic diversity and the genetic differentiation among sub-populations such as Banyabong, Byeoksoryeong, and Cheonwangbong were investigated. The average number of alleles (A) was 7.8, the average number of effective alleles ($A_e$) was 4.9, observed heterozygosity ($H_o$) was 0.578, and expected heterozygosity ($H_e$) was 0.672, respectively. The level of genetic diversity within sub-populations ($H_e=0.672$) was lower than those of both population ($H_e=0.778$) and species ($H_e=0.759$) level. However, the level of genetic diversity was high compared those of Genus Abies. Genetic differentiation was 0.014 from F-statistics ($F_{ST}$) and was 0.004 from AMOVA analysis (${\Phi}_{ST}$). There was no almost genetic differentiation among sub-populations in Mt. Jiri from bayesian clustering. Therefore, If the seeds are sampled sufficiently by selecting the parameters from three sub-populations, it is possible that we could obtain genetically appropriate materials for ecological restoration.

Modeling and Validation of Population Dynamics of the American Serpentine Leafminer (Liriomyza trifolii) Using Leaf Surface Temperatures of Greenhouses Cherry Tomatoes (방울토마토에서 잎 표면온도를 적용한 아메리카잎굴파리(Liriomyza trifolii) 개체군 밀도변동 모형작성 및 평가)

  • Park, Jung-Joon;Mo, Hyoung-Ho;Lee, Doo-Hyung;Shin, Key-Il;Cho, Ki-Jong
    • Korean journal of applied entomology
    • /
    • v.51 no.3
    • /
    • pp.235-243
    • /
    • 2012
  • Population dynamics of the American serpentine leafminer, Liriomyza trifolii (Burgess), were observed and modeled in order to compare the effects of air and tomato leaf temperatures inside a greenhouse using DYMEX model builder and simulator (pre-programed module based simulation programs developed by CSIRO, Australia). The DYMEX model simulator consisted of a series of modules with the parameters of temperature dependent development and oviposition models of L. trifolii were incorporated from pre-published data. Leaf surface temperatures of cherry tomato leaves (cv. 'Koko') were monitored according to three tomato plant positions (top, > 1.8 m above the ground level; middle, 0.9 - 1.2 m; bottom, 0.3 - 0.5 m) using an infrared temperature gun. Air temperature was monitored at the same three positions using a self-contained temperature logger. Data sets for the observed air temperature and average leaf surface temperatures were collected (top and bottom surfaces), and incorporated into the DYMEX simulator in order to compare the effects of air and leaf surface temperature on the population dynamics of L. trifolii. The initial population consisted of 50 eggs, which were laid by five female L. trifolii in early June. The number of L. trifolii larvae was counted by visual inspection of the tomato plants in order to verify the performance of DYMEX simulation. The egg, pupa, and adult stage of L. trifolii could not be counted due to its infeasible of visual inspection. A significant positive correlation between the observed and the predicted numbers of larvae was found when the leaf surface temperatures were incorporated into the DYMEX simulation (r = 0.97, p < 0.01), but no significant positive correlation was observed with air temperatures(r = 0.40, p = 0.18). This study demonstrated that the population dynamics of L. trifolii was affected greatly by the leaf temperatures, though to little discernible degree by the air temperatures, and thus the leaf surface temperature should be for a consideration in the management of L. trifolii within cherry tomato greenhouses.

A Study on the Stock Assessment and Management Implications of the Korean Aucha perch (Coreoperca herzi) in Freshwater: (1) Estimation of Population Ecological Characteristics of Coreoperca herzi in the Mid-Upper System of the Seomjin River (담수산 어류 꺽지 (Coreoperca herzi)의 자원 평가 및 관리 방안 연구: 섬진강 중.상류 수계에서 꺽지의 개체군 생태학적 특성치 추정 (1))

  • Jang, Sung-Hyun;Ryu, Hui-Seong;Lee, Jung-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.82-90
    • /
    • 2010
  • The ecological characteristics of the Korean Aucha perch, Coreoperca herzi, were determined in order to estimate stock of the mid-upper system of the Seomjin River. The age was determined by counting the otolith annuli. The oldest fish observed in this study was 5 years old. Relationships between body length (BL) and body weight (BW) were $BW=0.0195BL^{3.08}$ ($R^2=0.966$) (p<0.01). Relationships between the otolith radius (R) and body length (BL) were BL=3.882R+1.66 ($R^2=0.944$). The von Bertalanffy growth parameters estimated from a non-linear regression method were $L_{\infty}=19.68\;cm$, $W_{\infty}=188.64\;g$, $K=0.17\;year^{-1}$ and $t_0=-1.46$ year. Therefore, growth in length of the fish was expressed by the von Bertalanffy's growth equation as $L_t=19.68$ ($1-e^{-0.17(t+1.46)}$) ($R^2=0.997$). The annual survival rate (S) was estimated to be $0.666\;year^{-1}$. The instantaneous coefficient of natural mortality (M) of estimated from the Zhang and Megrey method was $0.346\;year^{-1}$, and instantaneous coefficient of fishing mortality (F) was calculated $0.061\;year^{-1}$. From the estimates of survival rate (S), the instantaneous coefficient of total mortality(Z) was estimated to be $0.407\;year^{-1}$.

A Study on the Growth and Spawning of Korean Scallop (Chlamys farreri) around Wando, Korea (한국 완도연안 비단가리비(Chlamys farreri)의 성장과 산란)

  • 강태구;장창익
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.3
    • /
    • pp.210-221
    • /
    • 2000
  • The population habitat and density of Korean scallops, Chlamys farreri, were investigated to estimate population ecological characteristics from samples randomly collected around Wando from November, 1998 to October, 1999. Age and growth of the Korean scallops were determined from their ring radii. Maturation and spawning were studied using data of ovary maturity stage, gonadosomatic index, and fecundity. Seawater temperature and specific gravity ranged from 7.6 to $25.9^{\circ}C$ and from 1.0188 to 1.0260, respectively. Also dissolved oxygen and pH ranged from 6.48 to 9.50 ppm and from 8.17 to 8.80. Rocky and gravel bottom had a maximum habitat density of $$28.83 inds/100m^2$$ , which accounted for 82.4 % of the overall habitat area. The relationship between shell length (SL, mm) and shell height (SH, mm) of the Korean scallops was fitted : SH=1.021 SL+2.211 $(R^2=0.989)$. The shell length-total weight (TW, g) relationship was $TW=0.0003; SL^{2.837};(R^2=0.980)$. Then von Bertalanffy growth parameters were estimated from a nonlinear regression method, and the values were as follows : $SH_{\infty}=117.4 mm$K=0.61/year,; and; t_0=-0.017 year., The 50 % maturity at age was 0.21 year with the shell height of 18.3 mm, and spawning occurred twice a year, that is, June/July and October. The relationship between fecundity (Fc) and shell length was$Fc=697.03 SL^{2.683}(R^2=0.984)$, and the fecundity-gonad weight (GW, g) relationship was Fc=10,076,090 GW+15,608,781 $(R^2=0.990)$.

  • PDF

Effects of Climatic Condition on Stability and Efficiency of Crop Production (농업 기상특성과 작물생산의 효율 및 안전성)

  • Robert H. Shaw
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.4
    • /
    • pp.296-313
    • /
    • 1982
  • At a time when world population and food supply are in a delicate balance, it is essential that we look at factors to improve this balance. We can alter the environment to better fit the plant's needs, or we can alter the plant to better fit the environment. Improved technology has allowed us to increase the yield level. For moderately detrimental weather events technology has generally decreased the yield variation, yet for major weather disasters the variation has increased. We have raised the upper level, but zero is still the bottom level. As we concentrate the production of particular crops into limited areas where the environment is closest to optimum, we may be increasing the risk of a major weather related disaster. We need to evaluate the degree of variability of different crops, and how weather and technology can interact to affect it. The natural limits of crop production are imposed by important ecological factors. Production is a function of the climate, the soil, and the crop and all activities related to them. In looking at the environment of a crop we must recognize these are individuals, populations and ecosystems. Under intensive agriculture we try to limit the competition to one desired species. The environment is made up of a complex of factors; radiation, moisture, temperature and wind, among others. Plant response to the environment is due to the interaction of all of these factors, yet in attempting to understand them we often examine each factor individually. Variation in crop yields is primarily a function of limiting environmental parameters. Various weather parameters will be discussed, with emphasis placed on how they impact on crop production. Although solar radiation is a driving force in crop production, it often shows little relationship to yield variation. Water may enter into crop production as both a limiting and excessive factor. The effects of moisture deficiency have received much more attention than moisture excess. In many areas of the world, a very significant portion of yield variation is due to variation in the moisture factor. Temperature imposes limits on where crops can be grown, and the type of crop that can be grown in an area. High temperature effects are often combined with deficient moisture effects. Cool temperatures determine the limits in which crops can be grown. Growing degree units, or heat accumulations, have often been used as a means of explaining many temperature effects. Methods for explaining chilling effects are more limited.

  • PDF