• Title/Summary/Keyword: poplar wood

Search Result 128, Processing Time 0.02 seconds

Changes of Specific Surface Area of the Steam Exploded Wood (폭쇄처리 목재의 비표면적변화)

  • Yang, Jae-Kyung;Kim, Hyun-Jung;Lee, Weon-Hee
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.1
    • /
    • pp.54-60
    • /
    • 1995
  • This paper reports on the changes of equilibrium moisture contents and specific surface areas of Poplar wood(Populus euramericana) for various steam explosion treatments. Equilibrium moisture contents(EMC) and specific surfaces of steam exploded woods were measured under the moisture adsorption course at 25$^{\circ}C$, and compared with those of other materials and wood meals. The EMCs of steam exploded wood meal were 1~5% less in comparison with that of wood meal. In the case of delignified steam exploded wood meal and delignified wood meal, the same tendency was appeared too. But absolute values of EMCs for delignified wood meals were larger than those of the wood meal. For the changes of EMC by the steam exploded conditions, the EMC decreased with the increase of the steam explosion pressure. On the other hand, specific surface areas were calculated from BET plots based on amounts of monomolecular vapor adsorption of various wood meals. Specific surface areas of the wood meal and delignified wood meal were 90~145, 34~90($m^2/g$) respectively, and which were greater in comparison with those of steam exploded wood meals and delignified steam exploded wood meals. From these results, it is considered that the amount of water vapor adsorption was decreased by the increase of the crystallinity, effect of heat treatment, and coating by melted lignin in during the steam explosion.

  • PDF

Effect of Wood-Fiber Characteristics on Medium Density Fiberboard (MDF) Performance

  • Park, Byung-Dae;Kim, Yoon-Soo;Riedl, Bernard
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.27-35
    • /
    • 2001
  • Four different sources of wood-fibers from Eucalyptus, Italian poplar, hemlock, and mixed species fibers were used to study the influence of their fiber characteristics on the performance of medium density fiberboard (MDF) panels bonded with both urea-formaldehyde (UF) and phenol-formaldehyde (PF) adhesives. Included fiber characteristics were fiber length, size distribution, bulk density, and acidity. Physical and mechanical properties of MDF panels manufactured by dry process using these different fibers were determined for the comparison of board performance. Two hardwood species had a large fraction of short fibers resulting in a higher bulk density while very long hemlock fibers had lower bulk density. Fiber acidity was revealed to strongly affect the internal bond (IB) strength of MDF panels bonded with UF resins. MDF panels made from mixed species fibers showed highest IB strength of all panels prepared. UF-bonded MDF panels showed poor dimensional stability. In conclusion, the present study showed that wood-fiber characteristics such as fiber length, bulk density, and acidity affect the performance of MDF boards, and also suggested that fiber characteristics be considered for MDF panel manufacture.

  • PDF

Seasonal Expression of OMT Gene in Relation to Lignin biosynthesis in two Poplar Species (종의 포플라수종에서 리그닌생합성에 관계된 OMT유전자의 발현)

  • Park, Young-Goo;Park, Hee Sung;Choi, Jang Won;Sul, Ill Whan;Chung, Il Kyung;Shin, Dong Ill
    • Journal of Life Science
    • /
    • v.8 no.4
    • /
    • pp.443-448
    • /
    • 1998
  • We analyzed lignin content and wxpression of OMT gene during growth season in two hybrid poplar species. OMT gene expression was observed mainy in the developing secondary xylem where major quantity of lignin occurs. Lignin content in the xylem tissue increased as plant resumed growth in the spring and reached the highest in the late August. Change in lignin content was concurrent with that of OMT gene expression, indicating OMT is a key enzyme in lignin biosynthesis.

  • PDF

Characterization of Chemical Composition in Poplar wood (Populus deltoides) by Suppression of CCoAOMT Gene Expression (CCoAOMT 유전자 발현 억제에 의한 현사시나무의 화학조성 변화)

  • Eom, In-Yong;Kim, Kwang-Ho;Lee, Soo-Min;Yi, Yong-Sub;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.3
    • /
    • pp.213-222
    • /
    • 2010
  • In this study, chemical compositions - holocellulose, lignin and monomeric sugars - were characterized with two poplar wood cell walls, one of which was grown at normal condition (CPW) and the other was genetically modified by antisence suppression of CCoAOMT gene expression (ACPW). Milled wood lignins were isolated from CPW and ACPW and subjected to methoxyl group, DFRC, Py-GC/MS, GPC, $^{13}C$-NMR analysis, respectively. There were few differences in holocellulose contents in both cell walls, which were determined to 81.6% in CPW and to 82.3% in ACPW. However, lignin contents in ACPW was clearly decreased by the suppression of CCoAOMT gene expression. In CPW 21.7% of lignin contents was determined, while lignin contents in ACPW was lowered to 18.3%. The relative poor solubility of ACPW in alkali solution could be attributed to the reduction of lignin content. The glucose contents of CPW and ACPW were measured to 511.0 mg/g and 584.8 mg/g and xylose contents 217.8 mg/g and 187.5 mg/g, respectively, indicating that suppression of CCoAOMT gene expression could be also influenced to the formation of monomeric sugar compositions. In depth investigation for milled wood lignin (MWL) isolated from both samples revealed that the methoxyl contents at ACPW was decreased by 7% in comparison to that of CPW, which were indirectly evidenced by $^{13}C$-NMR spectra and Py-GC/MS. According to the data from Py-GC/MS S/G ratios of lignin in CPW and ACPW were determined to 0.59 and 0.44, respectively. As conclusive remark, the biosynthesis of syringyl unit could be further influenced by antisense suppression of CCoAOMT during phenylpropanoid pathway in the plant cell wall rather than that of guaiacyl unit.

Selection of Poplar Clones for Short Rotation Coppice in a Riparian Area (수변지 단벌기 목재에너지림에 적합한 포플러 클론 선발)

  • Kim, Hyun-Chul;Lee, Sol-Ji;Lee, Wi-Young;Kang, Jun-Won
    • Journal of Korean Society of Forest Science
    • /
    • v.105 no.1
    • /
    • pp.103-107
    • /
    • 2016
  • This study aims to select the most appropriate poplar clones for planting on short rotation coppice poplar plantations in a riparian area. The research investigated biomass production, nitrogen and carbon absorption with 2-year-old poplar (Populus spp.) clones including P. euramericana clone Eco28, P. deltoides hybrid clone 97-18, and P. alba ${\times}$ P. glandulosa hybrid clone 72-30. The average number of stems per stump was five and P. euramericana clone Eco28 had the greatest average number of live stems per stump with 5.9. The average stem diameter was 23.2 mm, and P. deltoides hybrid clone 97-18 achieved the largest average diameter with 25.4 mm. The average annual above-ground biomass production of Populus deltoides hybrid clone 97-18 was 16.1 ton/ha/year, followed by P. alba ${\times}$ P. glandulosa hybrid clone 72-30 and P. euramericana clone Eco28, 12.3 and 5.4 ton/ha/year, respectively. The average annual nitrogen uptake of poplar clones was 46.5 kg/ha/year. P. alba ${\times}$ P. glandulosa hybrid clone 72-30 had the highest average, 63.1 kg/ha/year. The average of annual carbon absorption was estimated 5.3 ton/ha/year and Populus deltoides hybrid clone 97-18 showed the best results with 7.7 ton/ha/year. Based on the results given above, P. deltoides hybrid aspen clone 97-18 is considered as the most suitable poplar clones for wood biomass production on riparian areas.

Effect of Alternating Vacuum and Release Process on Drying Characteristics of Log Cross Section during Radio Frequency Drying

  • Xie, Dan;Lee, Nam-Ho;Chang, Yoon-Seong;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.5
    • /
    • pp.456-465
    • /
    • 2013
  • Log cross sections of yellow poplar were dried in a radio frequency vacuum (RFV) dryer under alternating vacuum and release (AVR) process. The average moisture content (MC), temperature and vapor pressure at the volumetric center were monitored as functions of time. Three different log thicknesses (33, 60 and 75mm) were tested. The results show that the AVR process caused an increase in the drying rate when the moisture content was above fiber saturation point (FSP, about 30% MC) but that it had an inverse effect on the drying rate when the MC was below FSP. The effect of the AVR process on the drying rate decreased, and the severity of heart checks increased, with the increase in the thickness of the specimens.

High-pressure Compaction of Sawdust of Hyunsasi-poplar (Populus alba ${\times}$ P. glandulosa) for Densified Fuel (고밀화에 의한 현사시 톱밥의 고형연료화)

  • 한규성;여진기
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.2
    • /
    • pp.54-59
    • /
    • 2003
  • Recently, densified pellet fuel from wood biomass is widely used at North America and Europe as a regenerable and clean carbon neutral bioenergy. High-pressure compaction of sawdust of Hyunsasi-poplar (Populus alba ${\times}$ P. glandulosa) to form a densified fuel was studied. Calorific and elemental analysis were carried out to assess Hyunsasi-poplar clones as fuels. Hot-press process was adopted for compaction of sawdust and compaction was performed under temperature from 100 to 180$^{\circ}C$, at pressure of 250 to 1000 kgf/$\textrm{cm}^2$, and for 2.5 to 10 minutes. Densified fuels were evaluated by its oven-dry density and fines after 5-minute shaking test. The target density and fines of densified fuels were over 1.2 g/$\textrm{cm}^2$ and below 0.5%, respectively. When the press-temperature is over 160$^{\circ}C$, densified fuels with density eve. 1.2 g/$\textrm{cm}^2$ and with fines below 0.5% can be produced. And the pressure over 750 kgf/$\textrm{cm}^2$ was effective for this production. It was found that the optimum press condition for preparation of densified fuel was 180$^{\circ}C$ -1000 kgf/$\textrm{cm}^2$ minutes.

  • PDF

Decay of Populus cathay Treated with Paraffin Wax Emulsion and Copper Azole Compound

  • Liu, Jie;Liu, Min;Hou, Bingyi;Ma, Erni
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.1
    • /
    • pp.21-32
    • /
    • 2019
  • In order to investigate the decay process of wood treated with preservative, waterproofing agent and their compound systems, a full-cell process was applied to impregnate the sapwood of poplar (Populus cathay) at paraffin wax emulsion concentrations of 0.5% and 2.0%, Copper Azole (CA) concentrations of 0.3% and 0.5%, and their four compound systems, respectively. Leaching tests and laboratory decay resistance against the white-rot fungus Corious versicolor (L.) Murrill for treated wood were carried out according to the America Standard E11-06 and China Standard GB/T 13942.1-2009. At certain time intervals during the decay test, samples were characterized by Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction technique (XRD) to investigate the time-dependent changes of chemical components and crystalline structure, thus clarifying the decay mechanisms. The results suggested that white-rot fungi degrade hemicellulose and lignin in the wood cell wall first, followed by a simultaneous degradation of polysaccharides and lignin. Besides, CA could not only slower the decomposition of both hemicellulose and lignin, but also reduce the degradation amount of hemicellulose. However, paraffin wax emulsion at high concentration had a negative effect on the impregnation of CA for the compound system treated wood.

Chemical Features of Solid Residues Obtained from Supercritical Water Treatment of Populus alba×glandulosa (현사시나무 목분의 초임계수 처리 공정으로부터 유래한 미분해 고형성분의 화학적 특성)

  • Kim, Kwang Ho;Eom, In Yong;Lee, Soo Min;Lee, Oh Kyu;Meier, D.;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.4
    • /
    • pp.372-380
    • /
    • 2009
  • After supercritical water treatment of poplar wood meals (passed through 60 mesh) for 60s between 325 and $425^{\circ}C$ at the fixed pressure at $220{\pm}10atm$, some solid residues were present in the degradation products. They mainly consisted of chemically modified lignin and fibrous materials. Glucose and xylose were identified as main sugar components of fibrous materials, and the highest ratio of glucose/xylose was achieved at the highest reaction temperature. As reaction temperature was elevated, the portion of fibrous materials decreased in the solid residues, while lignin was further accumulated. The H : G : S ratio of lignin in solid residues was estimated by analytical pyrolysis. Irrespective of reaction temperatures, the H:G:S ratios were not significantly changed in the lignin in solid residues. Compared to poplar milled wood lignin (MWL), it was remarkable that H type monomers were further lowered, while portion of S type monomers increased. The amount of G type monomers were relative stable. In presence of HCl catalyst, lowering H type as well as enhancing S type was further distinguishable. According to the result of nitrobenzene oxidation (NBO), ca. 265 mg of vanillin and syringaldehyde was yielded from poplar MWL as main products. However, remarkably reduced amount of NBO products were determined from solid residues by raising operating temperature as well as by the addition of HCl catalyst. These results strongly indicate that $\beta$-O-4 linkage could be easily cleaved during supercritical water treatment, so that the lignins in the solid residues seem to be condensed phenol polymers, which are mainly formed by carbon-carbon linkages rather than $\beta$-O-4 linkage.

Bio-ethanol Production from Alkali Prehydrolyzed Yellow Poplar (Liriodendron tulipifera L.) Using Enzymatic Saccharification and Fermentation (알칼리 전처리 백합나무(Liriodendron tulipifera L.)의 효소당화 및 발효에 의한 바이오 에탄올 생산)

  • Shin, Soo-Jeong;Cho, Dae Haeng;Han, Sim-Hee;Kim, Young Hwan;Cho, Nam-Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.305-310
    • /
    • 2009
  • Yellow poplar was selected a promising biomass resources for bio-ethanol production through alkali prehydrolysis, enzymatic saccharification and fermentation using commercial cellulase mixtures (Celluclast 1.5L and Novozym 342 mixtures) and fermenting yeast. In alkali prehydrolysis, 51.1% of Yellow poplar biomass remained as residues, which chemical compositions were 82.2% of cellulose, 17.6% of xylan and 2.0% of lignin. In alkali prehydrolysis process, 96.9% of cellulose, 38.0% of xylan and 5.7% of lignin were remained. Enzymatic saccharification by commercial cellulases led to 87.0% of cellulose to glucose and 87.2% of xylan to xylose conversion. Produced glucose and xylose were fermented with fermenting yeast (Saccharomycess cerevisiae), which resulted in selective fermentation of glucose only to bio-ethanol. Residual monosaccharides after fermentation were consisted to 0.4-1.4% of glucose and 92.1-99.5% of xylose. Ethanol concentration was highest for 24 h fermentation as 57.2 g/L, but gradually decreased to 56.2 g/L for 48 h fermentation and 54.3 g/L for 72 h fermentation, due to the ethanol consumption by fermenting yeast.