• 제목/요약/키워드: poorly graded soil

검색결과 13건 처리시간 0.03초

Friction behavior of controlled low strength material-soil interface

  • Han, WooJin;Kim, Sang Yeob;Lee, Jong-Sub;Byun, Yong-Hoon
    • Geomechanics and Engineering
    • /
    • 제18권4호
    • /
    • pp.407-415
    • /
    • 2019
  • A controlled low strength material (CLSM) is a highly flowable cementitious material used for trench backfilling. However, when applying vertical loads to backfilled trenches, shear failure or differential settlement may occur at the interface between the CLSM and natural soil. Hence, this study aims to evaluate the characteristics of the interface friction between the CLSM and soils based on curing time, gradation, and normal stress. The CLSM is composed of fly ash, calcium sulfoaluminate cement, sand, silt, water, and an accelerator. To investigate the engineering properties of the CLSM, flow and unconfined compressive strength tests are carried out. Poorly graded and well-graded sands are selected as the in-situ soil adjacent to the CLSM. The direct shear tests of the CLSM and soils are carried out under three normal stresses for four different curing times. The test results show that the shear strengths obtained within 1 day are higher than those obtained after 1 day. As the curing time increases, the maximum dilation of the poorly graded sand-CLSM specimens under lower normal stresses also generally increases. The maximum contraction increases with increasing normal stress, but it decreases with increasing curing time. The shear strengths of the well-graded sand-CLSM interface are greater than those of the poorly graded sand-CLSM interface. Moreover, the friction angle for the CLSM-soil interface decreases with increasing curing time, and the friction angles of the well-graded sand-CLSM interface are greater than those of the poorly graded sand-CLSM interface. The results suggest that the CLSM may be effectively used for trench backfilling owing to a better understanding of the interface shear strength and behavior between the CLSM and soils.

An Environmentally Friendly Soil Improvement Technology with Microorganism

  • Kim, Daehyeon;Park, Kyungho
    • International Journal of Railway
    • /
    • 제6권3호
    • /
    • pp.90-94
    • /
    • 2013
  • Cement or lime is generally used to improve the strength of soil. However, bacteria were utilized to produce cementation of loose soils in this study. The microo rganism called Bacillus, and $CaCl_2$ was introduced into loose sand and soft silt and $CaCO_3$ in the voids of soil particles were produced, leading to cementation of soil particles. In this study, loose sand and soft silt typically encountered in Korea were bio-treated with 3 types of bacteria concentration. The cementation (or calcite precipitation) in the soil particles induced by the high concentration bacteria treatment was investigated at 7 days after curing. Based on the results of Scanning Electron Microscope (SEM) tests and EDX analyses, high concentration bacteria treatment for loose sand was observed to produce noticeable amount of $CaCO_3$, implying a significant cementation of soil particles. It was observed that higher calcium carbonate depositions were observed in poorly graded distribution as compared to well graded distribution. In addition, effectiveness of biogrouting has also been found to be feasible by bio-treatment without any cementing agent.

Analysis of behavioral characteristics of liquefaction of sand through repeated triaxial compression test and numerical analysis

  • Hyeok Seo;Daehyeon Kim
    • Geomechanics and Engineering
    • /
    • 제38권2호
    • /
    • pp.165-177
    • /
    • 2024
  • Liquefaction phenomenon refers to a phenomenon in which excess pore water pressure occurs when a dynamic load such as an earthquake is rapidly applied to a loose sandy soil ground where the ground is saturated, and the ground loses effective stress and becomes liquid. The laboratory repetition test for liquefaction evaluation can be performed through a repeated triaxial compression test and a repeated shear test. In this regard, this study attempted to evaluate the effects of the relative density of sand on the liquefaction resistance strength according to particle size distribution using repeated triaxial compression tests, and additional experimental verification using numerical analysis was conducted to overcome the limitations of experimental equipment. As a result of the experiment, it was confirmed that the liquefaction resistance strength increased as the relative density increased regardless of the classification of soil, and the liquefaction resistance strength of the SP sample close to SW was quite high. As a result of numerical analysis, it was confirmed that the liquefaction resistance strength increased as the confining pressure increased under the same relative density, and the liquefaction resistance strength did not decrease below a certain limit even though the confining pressure was significantly reduced at a relatively low relative density. This is judged to be due to a change in confining pressure according to the depth of the ground. As a result of analyzing the liquefaction resistance strength according to the frequency range, it was confirmed that there was no significant difference from the laboratory experiment results in the basic range of 0.1 to 1.0 Hz.

Bacteria 토양주입을 통한 투수계수 감소 (Reduction of Hydraulic Conductivity by Soil Injection of Bacteria)

  • 송영우;김건하;구동영
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 봄 학술발표회 논문집
    • /
    • pp.331-337
    • /
    • 2000
  • When microorganism is injected into porous medium such as soils, biomass retained in the pore. Bacteria within these microcolonies produced large amounts of exopolysaccharides and formed a plugging biofilm. Soil pore size and shape are varied from the initial condition as a result of biofilm formation, which make hydraulic conductivity reduced and friction rate between soil aggregates increased. In this research, hydraulic conductivity reduction was measured after microorganism are inoculated and cultured with synthetic substrate and nutrient. Also, pore sand of before and after biofilm formation compared with scanning electron microscopy. Hydraulic conductivity of Sand and Poorly Graded Sand was decreased approximately 1/10∼1/100 after biomass inoculation and cultivation. Biofilm attached on soil aggregates is resistant to acidic or basic condition.

  • PDF

독도의 토층 분포 및 토질 특성 (Soil Layer Distribution and Soil Characteristics on Dokdo)

  • 김경수;송영석;방은석
    • 지질공학
    • /
    • 제33권3호
    • /
    • pp.475-487
    • /
    • 2023
  • 본 연구에서는 독도의 동도와 서도지역에 대한 토층 분포를 조사하고, 토질의 물리적 특성을 측정하여 분석하였다. 독도의 토층 분포를 조사하기 위하여 직접적으로 접근이 가능한 구간을 대상으로 토층 심도를 측정하였으며, 현장 접근이 불가능한 지역에 대해서는 드론 및 배 등을 이용하여 육안 관찰을 수행하였다. 독도의 토층 분포 및 심도에 대한 조사결과 토층의 심도는 3~50 cm 두께로 존재하며 대부분은 10~20 cm 내외의 두께를 갖는 것으로 조사되었다. 이러한 결과를 토대로 토층을 5 cm 두께로 구분하여 독도의 토층 분포도를 작성하였다. 독도의 토질특성을 분석하기 위하여 동도 및 서도를 대상으로 각각 13개소 위치에서 지질조건을 고려한 토질시료를 채취하였다. 토질시료에 대한 입도분포시험을 수행한 결과 모래의 함유량은 약 75% 이상인 것으로 나타났으며, 서도에서 채취한 흙은 자갈크기의 입자를 보다 많이 함유하는 것으로 나타났다. 입도분포시험를 이용한 통일분류법과 삼각도표 분류법을 토대로 입도 분포 특성을 분석한 결과 대부분의 흙은 모래로 분류되며, 일부 흙은 롬질 혹은 점토질 모래로 분류된다. 또한, 동도는 입도분포가 양호한 롬질 혹은 점토질 모래가 더 우세하고 서도는 입도분포가 불량한 자갈질 모래가 더 우세함을 알 수 있다. 이들 결과는 독도의 토질 특성을 연구하는데 있어 매우 중요한 기초자료가 될 것으로 기대한다.

A comprehensive laboratory compaction study: Geophysical assessment

  • Park, Junghee;Lee, Jong-Sub;Jang, Byeong-Su;Min, Dae-Hong;Yoon, Hyung-Koo
    • Geomechanics and Engineering
    • /
    • 제30권2호
    • /
    • pp.211-218
    • /
    • 2022
  • This study characterizes Proctor and geophysical properties in a broad range of grading and fines contents. The results show that soil index properties such as uniformity and fines plasticity control the optimum water content and peak dry unit trends, as well as elastic wave velocity. The capillary pressure at a degree of saturation less than S = 20% plays a critical role in determining the shear wave velocity for poorly graded sandy soils. The reduction in electrical resistivity with a higher water content becomes pronounced as the water phase is connected A parallel set of compaction and geophysical properties of sand-kaolinite mixtures reveal that the threshold boundaries computed from soil index properties adequately capture the transitions from sand-controlled to kaolinite-controlled behavior. In the transitional fines fraction zone between FF ≈ 20 and 40%, either sand or kaolinite or both sand and kaolinite could dominate the geophysical properties and all other properties associated with soil compaction behavior. Overall, the compaction and geophysical data gathered in this study can be used to gain a first-order approximation of the degree of compaction in the field and produce degree of compaction maps as a function of water content and fines fraction.

흙의 구성광물과 간극수의 성분이 비저항값에 미치는 영향에 관한 연구 (A Study on the Effect of Soil Wineral and Component of the Pore Fluid to the Electrical Resistivity)

  • 윤춘경;유찬;윤길림
    • 한국환경농학회지
    • /
    • 제17권1호
    • /
    • pp.59-64
    • /
    • 1998
  • The environmental problem of the rural area has been accelerated in soil as well as water. Soil contamination is usually caused by improper operation of landfills, abandoned mine fields, accidental spills, and illegal dumpings. Once soil contamination is initiated, pollutants migrate and may cause groundwater contamination which takes much effort for remediation. Early detection, therefore, is important to prevent further contamination. Electrical resistivity method was used to detect soil contamination, but it was not effective to the heterogeneous condition. Static cone penetrometer test (CPT) has been used widely to investigate geotechnical properties of the underground. In this study, electrical resistivity method and CPT are combined to improve the applicability of it. The pilot test was performed to examine the variation of electrical resistivity with different soil minerals and pore fluid characteristics. Soil samples used were poorly graded sand, silty sandy soil, and weathered granite soil. For all the cases, electrical resistivity decreased with increasing of moisture content. Soil mineral also affected the electrical resistivity significantly. Above all, leachate addition in the pore fluid was very sensitive and caused decreasing of electrical resistivity markedly. It implies that electrical resistivity method can be applied to investigate pollutant plume effectively. This is specially sure when the sensors contact the contaminated soils directly. The CPT method involves cone penetration to the ground, therefore, underground contamination around the cone could be investigated effectively even for heterogeneous condition as it penetrates if electrical resistivity sensors are attached on the cone.

  • PDF

직접전단시험에 의한 다양한 시료의 전단강도 특성 (Characteristics of Shear Strength Parameters of Various Soils by Direct Shear Test)

  • 박춘식;정정근
    • 터널과지하공간
    • /
    • 제28권6호
    • /
    • pp.584-595
    • /
    • 2018
  • 흙의 전단강도의 적절한 기준을 제시하기 위해 모래질, 점토질, 자갈질의 약 290 여개의 재료에 대하여 직접전단시험을 수행하였다. 흙의 대분류에 의한 모래질 흙의 전단강도는 모래 함유율이 많은 흙일수록 내부마찰각은 증가하는 경향이 뚜렷하게 나타났으며, 그 범위는 $23.5^{\circ}{\sim}34.9^{\circ}$에 분포하고 있는 것으로 나타났고, 점착력은 2.0 kPa~15.7 kPa 사이에서 골고루 분포하는 것으로 나타났다. 탄성계수는 하중단계에 따라 뚜렷하게 구분할 수 있었으며, 수직하중이 증가할수록 약 80%씩 증가하였다. 점토질 흙의 내부마찰각은 $15.0^{\circ}{\sim}28.6^{\circ}$의 범위에서 점토성분 함유율이 많아질수록 감소하는 경향이 나타났고, 점착력은 일정한 범위로 증가하는 경향이 나타났다. 점토질 흙의 탄성계수는 거의 같은 증가비로 초기탄성계수만 약간 증가하는 경향을 나타내었다. 자갈질 흙의 내부마찰각은 $29.9^{\circ}{\sim}36.7^{\circ}$의 범위로 뚜렷한 특성을 파악할 수 없었다. 세부분류에 따른 SW(입도분포가 좋은 모래), SP(입도분포가 나쁜 모래), SC(점토 섞인 모래), SM(실트 섞인 모래)의 점착력은 실트함유율이 가장 많은 SM 시료에 비해 SC는 약 94%, SW는 약 78%, SP는 약 59% 정도 값을 나타내었다. 또한 내부마찰각은 ML(액성한계가 낮은 실트)과 CL(액성한계가 낮은 점토)이 거의 같은 거동 특성을 나타내었고, MH(액성한계가 높은 실트)는 ML의 약 88% 값을 나타내었다. 점착력에 대한 변화는 거의 비슷한 증가비를 나타내었다.

Incremental filling ratio of pipe pile groups in sandy soil

  • Fattah, Mohammed Y.;Salim, Nahla M.;Al-Gharrawi, Asaad M.B.
    • Geomechanics and Engineering
    • /
    • 제15권1호
    • /
    • pp.695-710
    • /
    • 2018
  • Formation of a soil plug in an open-ended pile is a very important factor in determining the pile behavior both during driving and during static loading. The degree of soil plugging can be represented by the incremental filling ratio (IFR) which is defined as the change in the plug length to the change of the pile embedment length. The experimental tests carried out in this research contain 138 tests that are divided as follows: 36 tests for single pile, 36 tests for pile group ($2{\times}1$), 36 tests for pile group ($2{\times}2$) and 30 pile group ($2{\times}3$). All tubular piles were tested using the poorly graded sand from the city of Karbala in Iraq. The sand was prepared at three different densities using a raining technique. Different parameters are considered such as method of installation, relative density, removal of soil plug with respect to length of plug and pile length to diameter ratio. The soil plug is removed using a new device which is manufactured to remove the soil column inside open pipe piles group installed using driving and pressing device. The principle of soil plug removal depends on suction of sand inside the pile. It was concluded that the incremental filling ratio (IFR) is changed with the changing of soil state and method of installation. For driven pipe pile group, the average IFR for piles in loose is 18% and 19.5% for L/D=12 and 15, respectively, while the average of IFR for driven piles in dense sand is 30% and 20% for L/D=12 and L/D=15 respectively. For pressed method of pile installation, the average IFR for group is zero for loose and medium sand and about 5% for dense sand. The group capacity increases with the increase of IFR. For driven pile with length of 450 mm, the average IFR % is about 30.3% in dense sand, 14% in medium and 18.3% for loose sand while when the length of pile is 300 mm, the percentage equals to 20%, 17% and 19.5%, respectively.

Full-scale investigations into installation damage of nonwoven geotextiles

  • Sardehaei, Ehsan Amjadi;Mehrjardi, Gholamhosein Tavakoli;Dawson, Andrew
    • Geomechanics and Engineering
    • /
    • 제17권1호
    • /
    • pp.81-95
    • /
    • 2019
  • Due to the importance of soil reinforcement using geotextiles in geotechnical engineering, study and investigation into long-term performance, design life and survivability of geotextiles, especially due to installation damage are necessary and will affect their economy. During installation, spreading and compaction of backfill materials, geotextiles may encounter severe stresses which can be higher than they will experience in-service. This paper aims to investigate the installation damage of geotextiles, in order to obtain a good approach to the estimation of the material's strength reduction factor. A series of full-scale tests were conducted to simulate the installation process. The study includes four deliberately poorly-graded backfill materials, two kinds of subgrades with different CBR values, three nonwoven needle-punched geotextiles of classes 1, 2 and 3 (according to AASHTO M288-08) and two different relative densities for the backfill materials. Also, to determine how well or how poorly the geotextiles tolerated the imposed construction stresses, grab tensile tests and visual inspections were carried out on geotextile specimens (before and after installation). Visual inspections of the geotextiles revealed sedimentation of fine-grained particles in all specimens and local stretching of geotextiles by larger soil particles which exerted some damage. A regression model is proposed to reliably predict the installation damage reduction factor. The results, obtained by grab tensile tests and via the proposed models, indicated that the strength reduction factor due to installation damage was reduced as the median grain size and relative density of the backfill decreases, stress transferred to the geotextiles' level decreases and as the as-received grab tensile strength of geotextile and the subgrades' CBR value increase.