• 제목/요약/키워드: pooling layer

검색결과 52건 처리시간 0.018초

MAC과 Pooling Layer을 최적화시킨 소형 CNN 가속기 칩 (Compact CNN Accelerator Chip Design with Optimized MAC And Pooling Layers)

  • 손현욱;이동영;김형원
    • 한국정보통신학회논문지
    • /
    • 제25권9호
    • /
    • pp.1158-1165
    • /
    • 2021
  • 본 논문은 메모리의 사이즈를 줄이기 위해 Pooling Layer가 MAC에 통합된 구조의 최적화된 CNN가속기를 설계하는 것을 제안한다. 메모리와 데이터 전달 회로의 최소화를 위해 MNIST를 이용하여 학습된 32bit 부동소수점 가중치 값을 8bit로 양자화하여 사용하였다. 가속기칩 크기의 최소화를 위해 MNIST용 CNN 모델을 1개의 Convolutional layer, 4*4 Max Pooling, 두 개의 Fully connected layer로 축소하였고 모든 연산에는근사화 덧셈기와 곱셈기가 들어간 특수 MAC을 사용한다. Convolution 연산과 동시에 Pooling이 동작하도록 설계하여 내장 메모리를 94% 만큼 축소하였으며, pooling 연산의 지연 시간을 단축했다. 제안된 구조로 MNIST CNN 가속기칩을 TSMC 65nm GP 공정으로 설계한 결과 기존 연구결과의 절반 크기인 0.8mm x 0.9mm = 0.72mm2의 초소형 가속기 설계 결과를 도출하였다. 제안된 CNN 가속기칩의 테스트 결과 94%의 높은 정확도를 확인하였으며, 100MHz 클럭 사용시 MNIST 이미지당 77us의 빠른 처리 시간을 획득하였다.

GPGPU와 Combined Layer를 이용한 필기체 숫자인식 CNN구조 구현 (Implementation of handwritten digit recognition CNN structure using GPGPU and Combined Layer)

  • 이상일;남기훈;정준모
    • 문화기술의 융합
    • /
    • 제3권4호
    • /
    • pp.165-169
    • /
    • 2017
  • CNN(Convolutional Nerual Network)는 기계학습 알고리즘 중에서도 이미지의 인식과 분류에 뛰어난 성능을 보이는 알고리즘 중 하나이다. CNN의 경우 간단하지만 많은 연산량을 가지고 있어 많은 시간이 소요된다. 따라서 본 논문에서는 CNN 수행과정에서 많은 처리시간이 소모되는 convolution layer와 pooling layer, fully connected layer의 연산수행을 SIMT(Single Instruction Multiple Thread)구조의 GPGPU(General-Purpose computing on Graphics Processing Units)를 통하여 병렬로 연산처리를 수행했다. 또한 convolution layer의 출력을 저장하지 않고 pooling layer의 입력으로 바로 사용함으로 메모리 접근횟수를 줄여 성능 향상을 기대했다. 본 논문에서는 이 실험검증을 위하여 MNIST 데이터 셋을 사용하였고 이를 통하여 제안하는 CNN 구조가 기존의 구조보다 12.38% 더 좋은 성능을 보임을 확인했다.

정규화 및 교차검증 횟수 감소를 위한 무작위 풀링 연산 선택에 관한 연구 (A Study on Random Selection of Pooling Operations for Regularization and Reduction of Cross Validation)

  • 류서현
    • 한국산학기술학회논문지
    • /
    • 제19권4호
    • /
    • pp.161-166
    • /
    • 2018
  • 본 논문에서는 컨볼루션 신경망 구조(Convolution Neural Network)에서 정규화 및 교차검증 횟수 감소를 위한 무작위로 풀링 연산을 선택하는 방법에 대해 설명한다. 컨볼루션 신경망 구조에서 풀링 연산은 피쳐맵(Feature Map) 크기 감소 및 이동 불변(Shift Invariant)을 위해 사용된다. 기존의 풀링 방법은 각 풀링 계층에서 하나의 풀링 연산이 적용된다. 이러한 방법은 학습 간 신경망 구조의 변화가 없기 때문에, 학습 자료에 과도하게 맞추는 과 적합(Overfitting) 문제를 가지고 있다. 또한 최적의 풀링 연산 조합을 찾기 위해서는, 각 풀링 연산 조합에 대해 교차검증을 하여 최고의 성능을 내는 조합을 찾아야 한다. 이러한 문제를 해결하기 위해, 풀링 계층에 확률적인 개념을 도입한 무작위 풀링 연산 선택 방법을 제안한다. 제안한 방법은 풀링 계층에 하나의 풀링 연산을 적용하지 않는다. 학습기간 동안 각 풀링 영역에서 여러 풀링 연산 중 하나를 무작위로 선택한다. 그리고 시험 시에는 각 풀링 영역에서 사용된 풀링 연산의 평균을 적용한다. 이러한 방법은 풀링 영역에서 서로 다른 풀링 조합을 사용한 구조의 평균을 한 것으로 볼 수 있다. 따라서, 컨볼루션 신경망 구조가 학습데이터에 과도하게 맞추어지는 과적합 문제를 피할 수 있으며, 또한 각 풀링 계층에서 특정 풀링 연산을 선택할 필요가 없기 때문에 교차 검증 횟수를 감소시킬 수 있다. 실험을 통해, 제안한 방법은 정규화 성능을 향상시킬 뿐만 아니라 및 교차 검증 횟수를 줄일 수 있다는 것을 검증하였다.

Spectral Pooling: DFT 기반 풀링 계층이 보여주는 여러 가능성에 대한 연구 (Spectral Pooling: A study on the various possibilities of the DFT-based Pooling layer)

  • 이성주;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.87-90
    • /
    • 2020
  • GPU의 발전과 함께 성장한 딥러닝(Deep Learning)은 영상 분류 문제에서 최고의 성능을 보이고 있다. 그러나 합성곱 신경망 기반의 모델을 깊게 쌓음에 따라 신경망의 표현력이 좋아짐과 동시에 때로는 학습이 잘되지 않고 성능이 저하되는 등의 부작용도 등장했다. 성능 향상을 방해하는 주요 요인 중 하나는, 차원감소 목적에 따라 필연적으로 정보 손실을 겪어야 하는 풀링 계층에 있다. 따라서 특성맵(Feature map)의 차원감소를 통해 얻게 되는 비용적 이득과 모델의 분류 성능 사이의 취사선택(Trade-off)이 존재한다. 그리고 이로부터 자유로워지기 위한 다양한 연구와 기법이 존재하는데 Spectral Pooling도 이 중 하나이다. 본 논문에서는 이산 푸리에 변환(Discrete Fourier Transform, DFT)을 이용한 Spectral Pooling에 대한 소개와, 해당 풀링의 성질을 통상적으로 사용되고 있는 Max Pooling과의 성능 비교를 통해 분석한다. 또한 영상 내 고주파수 부분에서 특히 더 강건하지 못하다는 맥스 풀링의 고질적인 문제점을, Spectral Pooling과의 하이브리드(Hybrid) 구조를 통해 어떻게 극복해나갈 것인지 그 가능성을 중심으로 실험을 수행했다.

  • PDF

내부 FC층을 갖는 새로운 CNN 구조의 설계 (Design of new CNN structure with internal FC layer)

  • 박희문;박성찬;황광복;최영규;박진현
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.466-467
    • /
    • 2018
  • 최근 이미지 인식, 영상 인식, 음성 인식, 자연어 처리 등 다양한 분야에 인공지능이 적용되면서 딥러닝(Deep learning) 기술에 관한 관심이 높아지고 있다. 딥러닝 중에서도 가장 대표적인 알고리즘으로 이미지 인식 및 분류에 강점이 있고 각 분야에 많이 쓰이고 있는 CNN(Convolutional Neural Network)에 대한 많은 연구가 진행되고 있다. 본 논문에서는 일반적인 CNN 구조를 변형한 새로운 네트워크 구조를 제안하고자 한다. 일반적인 CNN 구조는 convolution layer, pooling layer, fully-connected layer로 구성된다. 그러므로 본 연구에서는 일반적인 CNN 구조 내부에 FC를 첨가한 새로운 네트워크를 구성하고자 한다. 이러한 변형은 컨볼루션된 이미지에 신경회로망이 갖는 장점인 일반화 기능을 포함시켜 정확도를 올리고자 한다.

  • PDF

A deep and multiscale network for pavement crack detection based on function-specific modules

  • Guolong Wang;Kelvin C.P. Wang;Allen A. Zhang;Guangwei Yang
    • Smart Structures and Systems
    • /
    • 제32권3호
    • /
    • pp.135-151
    • /
    • 2023
  • Using 3D asphalt pavement surface data, a deep and multiscale network named CrackNet-M is proposed in this paper for pixel-level crack detection for improvements in both accuracy and robustness. The CrackNet-M consists of four function-specific architectural modules: a central branch net (CBN), a crack map enhancement (CME) module, three pooling feature pyramids (PFP), and an output layer. The CBN maintains crack boundaries using no pooling reductions throughout all convolutional layers. The CME applies a pooling layer to enhance potential thin cracks for better continuity, consuming no data loss and attenuation when working jointly with CBN. The PFP modules implement direct down-sampling and pyramidal up-sampling with multiscale contexts specifically for the detection of thick cracks and exclusion of non-crack patterns. Finally, the output layer is optimized with a skip layer supervision technique proposed to further improve the network performance. Compared with traditional supervisions, the skip layer supervision brings about not only significant performance gains with respect to both accuracy and robustness but a faster convergence rate. CrackNet-M was trained on a total of 2,500 pixel-wise annotated 3D pavement images and finely scaled with another 200 images with full considerations on accuracy and efficiency. CrackNet-M can potentially achieve crack detection in real-time with a processing speed of 40 ms/image. The experimental results on 500 testing images demonstrate that CrackNet-M can effectively detect both thick and thin cracks from various pavement surfaces with a high level of Precision (94.28%), Recall (93.89%), and F-measure (94.04%). In addition, the proposed CrackNet-M compares favorably to other well-developed networks with respect to the detection of thin cracks as well as the removal of shoulder drop-offs.

GP-GPU를 이용한 보행자 추론 CNN (Pedestrian Inference Convolution Neural Network Using GP-GPU)

  • 정준모
    • 전기전자학회논문지
    • /
    • 제21권3호
    • /
    • pp.244-247
    • /
    • 2017
  • 본 논문에서는 GP-GPU를 활용한 보행자 추론 컨볼루션 뉴럴 네트워크를 구현했다. CNN은 구조를 정한 후, 학습에서 얻은 가중치를 이용해 기존 연구인 256개의 스레드를 가지는 GP-GPU를 활용해 추론을 수행했다. 학습에는 Inter i7-4470 CPU와 Matlab을 사용했다. Dataset은 Daimler Pedestrian Dataset을 사용했다. GP-GPU는 PCIe를 이용해 PC로부터 제어를 받으며, FPGA로 동작한다. 각 레이어의 depth와 size에 따라 스레드를 할당했다. 풀링 레이어의 경우는 over warpping pooling을 사용했기 때문에 횡영역과 종영역에 추가적인 연산을 수행했다. 한 번의 추론에는 약 12ms가 걸린다.

Prioritized Resource Allocation in Wireless Spectrum Pooling

  • Biglieri, Ezio;Lozano, Angel;Alrajeh, Nabil
    • Journal of Communications and Networks
    • /
    • 제14권5호
    • /
    • pp.495-500
    • /
    • 2012
  • A standard paradigm for the allocation of wireless resources in communication demands symmetry, whereby all users are assumed to be on equal footing and hence get equal shares of communication capabilities. However, there are situations in which "prime users" should be given higher priority, as for example in the transmission of emergency messages. In this paper, we examine a prioritization policy that can be implemented at the physical layer. In particular, we evaluate the performance of a prioritized transmission scheme based on spectrum pooling and on the assignment of higher signal-to-noise ratio channels to higher-priority users. This performance is compared to that of unprioritized (or "symmetric") schemes, and the impact of prioritization on the unprioritized users is discussed.

Pyramid pooling을 이용한 CNN 기반의 Human Parsing 기법 (CNN-based Human Parsing Technique Using Pyramid Pooling)

  • 최인규;고민수;송혁
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2018년도 추계학술대회
    • /
    • pp.97-98
    • /
    • 2018
  • 최근 딥러닝 기술의 발전으로 영상 분류 및 영상 내 객체 검출뿐만 아니라 CNN 기반의 segmentation 기술도 개발되어 다른 요소까지 포함한 직사각형 영역의 검출 영역이 아닌 경계까지 고려한 분리가 가능하게 되었다. 더불어 사람 영역을 신체부위나 의류 부분과 같은 세부 영역으로 나누어 분리하는 human parsing 기술까지 연구되고 있다. Human parsing은 의류스타일 분석 및 검색, 사람의 행동 인식 및 추적과 같은 분야에도 응용될 수 있다. 본 논문에서는 Spatial pyramid pooling layer를 이용하여 영상 전체에 대한 공간적 분포 및 특성 정보를 고려한 human parsing 기법을 제안한다. Look into person(LIP) dataset을 이용하여 기존의 다른 segmentation 및 human parsing 기법과 제안하는 기법을 비교하여 제안하는 기법의 human parsing 결과가 보다 정교한 분리가 가능한 것을 확인하였다.

  • PDF

Low Resolution Infrared Image Deep Convolution Neural Network for Embedded System

  • Hong, Yong-hee;Jin, Sang-hun;Kim, Dae-hyeon;Jhee, Ho-Jin
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권6호
    • /
    • pp.1-8
    • /
    • 2021
  • 본 논문은 저해상도 적외선영상을 사양이 낮은 임베디드 시스템에서 추론 가능하도록 강화된 VGG 스타일과 Global Average Pooling 조합으로 정확도를 증가시키면서 연산량을 최소화하는 딥러닝 컨볼루션 신경망을 이용한 저해상도 적외선 표적 분류 방법을 제안한다. 제안한 알고리즘은 OKTAL-SE로 생성한 합성영상 클래스 9개 3,723,328개를 분류하였다. 최초 임베디드 추론 가능하도록 파라메터 수가 최소화된 최대풀링 레이어 기준 입력단 8개와 출력단 8개 조합에 비해 강화된 VGG 스타일을 적용한 입력단 4개와 출력단 16개 필터수 조합을 이용하여 연산량은 약 34% 감소시켰으며, 정확도는 약 2.4% 증가시켜 최종 정확도 96.1%을 획득하였다. 추가로 C 코드로 포팅하여 수행시간을 확인하였으며, 줄어든 연산량 만큼 수행 시간이 약 32% 줄어든 것을 확인할 수 있었다.