• Title/Summary/Keyword: polysulfone membrane

Search Result 221, Processing Time 0.019 seconds

Synthesis, Morphology and Permeation Properties of poly(dimethyl siloxane)-poly(1-vinyl-2-pyrrolidinone) Comb Copolymer (폴리디메틸실록산-폴리비닐피롤리돈 빗살 공중합체 합성, 모폴로지 및 투과성질)

  • Patel, Rajkumar;Park, Jung Tae;Park, Min Su;Kim, Jong Hak
    • Membrane Journal
    • /
    • v.27 no.6
    • /
    • pp.499-505
    • /
    • 2017
  • The increasing number of natural disasters resulting from anthropogenic greenhouse gas emissions has prompted the development of a gas separation membrane. Carbon dioxide ($CO_2$) is the main cause of global warming. Organic polymeric membranes with inherent flexibility are good candidates for use in gas separation membranes and poly(dimethyl siloxane)(PDMS) specifically is a promising material due to its inherently high $CO_2$ diffusivity. In addition, poly(vinyl pyrrolidine)(PVP) is a polymer with high $CO_2$ solubility that could be incorporated into a gas separation membrane. In this study, poly(dimethyl siloxane)-poly(vinyl pyrrolidine)(PDMS-PVP) comb copolymers with different compositions were synthesized under mild conditions via a simple one step free radical polymerization. The copolymerization of PDMS and PVP was characterized by FTIR. The morphology and thermal behavior of the produced polymers were characterized by transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC). Composite membranes composed of PDMS-PVP on a microporous polysulfone substrate layer were prepared and their $CO_2$ separation properties were subsequently studied. The $CO_2$ permeance and $CO_2/N_2$ selectivity through the PDMS-PVP composite membrane reached 140.6 GPU and 12.0, respectively.

Studies on the Transport of Acetic Acid by Electrodialysis (전기투석에 의한 초산의 이동특성 연구)

  • 최동민;구윤모
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.360-366
    • /
    • 1996
  • Electrodialysis of acetic acid was studied to find out the trend of the transport of organic acids through ultrafiltration and ion exchange membranes. The net transport rate of acetic acid was determined from the electro-migration velocity relative to the electro-osmotic flow rate through the membrane. Electro-osmosis flows through ultrafiltration membranes were from the anodic side to the cathodic side in the presence of electric field. The surface of ultrafiltration membrane was measured by the electro-osmotic flow to be charged negatively. Different transport behaviors of acetic acid were found with the ultrafiltration membranes of different materials. In general, regenerated cellulose membranes (YM series) were more effective than polysulfone membranes (PM series) for the transport of acetic acid. The transport of acetic acid was affected by electric strength, distance between the electrodes, surface area of electrode, temperature, and pore size of membrane. The transport rate through the ion exchange membrane was 1.5 to 3 times of those through the ultrafiltration membranes at the constant current of 150 mA in the experimental ranges. The transport rate of acetic acid through the ion exchange membrane increased by 10% with a pulse electric field of 10 sec/hr.

  • PDF

The Effect of Gel Layer Formation on Fouling Characteristics in Ultrafiltration of Peach Juice (복숭아 주스의 한외여과시 겔층형성에 따른 막오염 특성)

  • 고은정;이주백;이준호;최용희
    • Food Science and Preservation
    • /
    • v.6 no.4
    • /
    • pp.424-428
    • /
    • 1999
  • The performance of a 30K polysulfone membrane for clarification of depectinized peach juice was studied Ultrafiltration of peach juice could minimize to loss of flavor and many compounds and was expected to effectively remove precipitation and suspended solid. The results showed that permeate flux increased with the increase of operating pressure and temperature. The permeate flux declined continuously as the process time increased. The values of soluble solid and titratable acidity of permeate were decreased or were at the same level, the turbidity was largely decreased. Total resistance decreased with lower temperature and lower pressure.

  • PDF

Extraction of La(III) by a nonionic microemulsion containing D2EHPA in hollow fiber contactor

  • Ou, Huilin;Gong, Fuzhong;Tang, Yanxia;Luo, Yan;Liu, Liheng
    • Membrane and Water Treatment
    • /
    • v.12 no.2
    • /
    • pp.75-82
    • /
    • 2021
  • This study aimed to prepare a W/O nonionic microemulsion system(MEs) consisting of OP-4[polyoxyethylene(4) nonylphenol], OP-7[polyoxyethylene(7) nonylphenol], 1-hexanol, D2EHPA, kerosene and HCl solution and applied to the extraction of La(III) from chloride aqueous solution within the polysulfone hollow fiber contactor (HFC),laboratory-scale experiments were carried out to investigate the recovery of La(III) using as-prepared microemulsion from the simulation wastewater containing La(III),Al(III) and Fe(III). The right weight ratio(Rs) of OP-4 to OP-7 was firstly confirmed through determination of the solubilization capacity of HCl solution(W0,HCl) in microemulsion, the effect of several factors such as the HCl concentration, temperature and effective extraction time on the extraction efficiency of La(III) was discussed. Results showed that the acceptable Rs was 4:6 to prepare the W/O MEs. The extraction yield of La(III) increased with the increasing of HCl concentration, temperature and effective extraction time and reaches to 97.3% while using five-stage modules. The recovery yield of La(III) from simulation La-bearing wastewater was 90.6%.

Filtration Characteristics of H2O-C6H12O6 Solution at Cell Membrane Model of Kidney which Irradiated by High Energy X-Ray (고에너지 엑스선을 조사한 신장의 세포막모델에서 포도당수용액 (H2O-C6H12O6)의 여과작용특성)

  • Ko, In-Ho;Yeo, Jin-Dong
    • Journal of the Korean Society of Radiology
    • /
    • v.14 no.2
    • /
    • pp.85-95
    • /
    • 2020
  • The filtration characteristics of H2O-C6H12O6 solution at cell membrane model in renal tubule which irradiated by high energy x-ray(linac 6MV) was investigated. The cell membrane model used in this experiment was a polysulfonated copolymerized membrane of m-phenylene-diamine(MPD) and trimesoyl chloride(TMC)-hexane. They were used to two cell membrane models(CM-1, CM-2). The cell membrane model composed of 0.5 wt% TMC-hexane solution(CM-2) had higher permeate flux(Jv) and rejection coefficient(R) than composed of 0.1 wt% TMC-hexane solution(CM-1). The permeate flux(Jv) and rejection coefficient(R) of H2O-C6H12O6 solution in two cell membrane models(CM-1, CM-2) were increased with increase of pressure drop and effective pressure difference. In this experiment range(pressure 1.5-4 MPa, temperature 36.5 ℃), permeate flux(Jv) of H2O solvent in irradiated membrane was found to be decreased about 20-30 times than non-irradiated membrane, permeate flux(Jv) and rejection coefficient(R) of H2O-C6H12O6 solution in irradiated membrane was found to be decreased about 2-13 times, about 4-6 times than non-irradiated membrane, respectively. The concentration increase of H2O-C6H12O6 solution at cell membrane model significantly was increased at rejection coefficient(R), was decreased at permeate flux(Jv). As the filtration of H2O-C6H12O6 solution in cell membrane model were abnormal, cell damages were appeared at cell.

Separation Permeation Characteristics of N2-O2 Gas in Air at Cell Membrane Model of Skin which Irradiated by High Energy Electron (고에너지 전자선을 조사한 피부의 세포막모델에서 공기 중의 O2-N2 혼합기체의 분리투과 특성)

  • Ko, In-Ho;Yeo, Jin-Dong
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.2
    • /
    • pp.261-270
    • /
    • 2019
  • The separation permeation characteristics of $N_2-O_2$ gas in air at cell membrane model of skin which irradiated by high energy electron(linac 6 MeV) were investigated. The cell membrane model of skin used in this experiment was a sulfonated polydimethyl siloxane(PDMS) non-porous membrane. The pressure range of $N_2$ and $O_2$ gas were appeared from $1kg_f/cm^2$ to $6kg_f/cm^2$. In this experiment(temperature $36.5^{\circ}C$), the permeation change of $N_2$ and $O_2$ gas in non-porous membrane by non-irradiation were found to be $1.19{\times}10^{-4}-2.43{\times}10^{-4}$, $1.72{\times}10^{-4}-2.6{\times}10^{-4}cm^3(STP)/cm^2{\cdot}sec{\cdot}cmHg$, respectively. That of $N_2$ and $O_2$ gas in non-porous membrane by irradiation were found to be $0.19{\times}10^{-4}-0.56{\times}10^{-4}$, $0.41{\times}10^{-4}-0.76{\times}10^{-4}cm^3(STP)/cm^2{\cdot}sec{\cdot}cmHg$, respectively. The irradiated membrane was significantly decreased about 4-10 times than membrane which was not irradiated. And ideal separation factor of $N_2$ and $O_2$ gas by non-irradiation was found to be from 1.32 to 0.42 and that of $N_2$ and $O_2$ gas by irradiation was found to be from 0.237 to 0.125. The irradiated membrane was significantly decreased about 4-5 times than membrane which was not irradiated. When the operation change(cut) and pressure ratio(Pr) by non-irradiation were about 0, One was increased to the oxygen enrichment and the other was decreased to the oxygen enrichment. The irradiated membrane was significantly decreased about 4-19 times than membrane which was not irradiated. As the pressure of $N_2$ and $O_2$ gas was increased, the selectivity was decreased. As separation permeation characteristics of $N_2-O_2$ gas in cell membrane model of skin were abnormal, cell damages were appeared at cell.

Synthesis of Crosslinkable m-Aramid Ionomer Containing Sulfonated Ether Sulfone and Their Characterization for PEMFC Membrane (Sulfonated Ether Sulfone을 포함한 Crosslinkable m-Aramid계 Ionomer의 합성과 연료전지 막으로의 이용)

  • Jung, Hyun-Jin;Kim, Jung-Min;Cho, Chang-Gi
    • Polymer(Korea)
    • /
    • v.34 no.3
    • /
    • pp.202-209
    • /
    • 2010
  • Aromatic copolyamides were prepared and their applicability to proton exchange membrane wasstudied. The copolymer contains thermally stable and mechanically strong poly(m-phenylene isophthalamide) segments, and easily processable and good film forming polysulfone segments. For the copolymer, amineterminated sulfonated ether sulfone monomer, m-phenylene diamine, and isophthaloyl chloride were reacted, and the obtained copolymer was transformed into crosslinkable prepolymer by the reaction with acryloyl chloride. The prepolymer was thermally cured and converted into proton exchange membranes for fuel cell application. Each reaction step and the molecular characteristics of precursor copolymers were monitored and confirmed by $^1H$ NMR, FTIR, and titration. The performance of the membranes was measured in terms of water uptake, proton conductivity, and thermal stability. The water uptake, ion exchange capacity (IEC), and proton conductivity of the membranes increased with the increase of sulfonated ether sulfone segment content. Membrane containing 30 mol% sulfonic acid sulfone segment showed 1.57 meq/g IEC value. Water uptake was limited less than 44 wt% and the highest proton conductivity up to $3.93{\times}10^{-2}S/cm$ ($25^{\circ}C$, RH= 100%) was observed.

Clarification of Apple Vinegar by Ultrafiltration and Flux Charcateristics (한외여과를 이용한 사과식초의 청징화와 투과특성)

  • Kim, Soon-Dong;Chung, Ho-Duck;Choi, Yong-Hee;Youn, Kwang-Sup
    • Applied Biological Chemistry
    • /
    • v.43 no.1
    • /
    • pp.24-28
    • /
    • 2000
  • This study was conducted to evaluate the effect of ultrafiltration (UF) process variables on permeate flux and membrane resistance and to clarify apple vinegar for quality improvement. Apple vinegar was clarified in a laboratory ultrafiltration system with hollow fiber membrane made of polysulfone and MWCO 30,000 and 10,000. The permeate flux increased with the increase of flow rate and the optimum pressure was $1.5\;kgf/cm^2$ in this system. The turbidity of clarified apple vinegar treated UF largely decreased. pH and acidity of treated samples showed the same level as those of untreated apple vinegar. The permeate flux continuously declined while the fouling material accumulated on the membrane as the operation time increased. Resistance decreased with lower pressure, which could be explained by expansion of pore size at lower pressure and minor compaction of the polarized layer at lower pressure.

  • PDF

Separation of Highly Purified Antimicrobial Lysozyme Using Ultrafiltration and Characteristics of Membrane Fouling (한외여과 공정을 이용한 고순도 향균 Lysozyme 의 분리 및 막 침착 특성)

  • Lee, Eun-Young;Woo, Gun-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.458-464
    • /
    • 1999
  • The value of lysozyme as a natural food preservative is continuously increased due to its unique antimicrobial activity. To determine the optimum separation concentration among the various hen egg white protein (HEWP) concentrations (0.25, 0.5, 1.0, w/v), protein concentrations, lysozyme concentrations, specific activities (SA), and purification factors of prefiltered solution (PFS) and PM30 permeate solution (PMS) were compared. The purity of lysozyme separated at each step was analyzed and confirmed by gel permeation chromatography and electrophoresis. The fouling deposits on membrane were observed by SEM. The non-enzymatic proteins were removed over 99% by ultrafiltration (UF). The increased feed concentration did not contribute to the increase of SA. SA of PMS was 18 to 31 times higher than that of PFS. The optimum feed concentration was decided as 0.25% based on SA and purification factor. The non-enzymatic region of gel chromatogram was proved to be ovalbumin. The thickness of deposit on the UF membrane was approximately $0.9{\mu}m$ and removed by cleaning with 0.1 N NaOH. Therefore, UF using PM30 membrane was very effective to separate the antimicrobial lysozyme from various HEWPs.

  • PDF

Preparation and Characterization of Crosslinked Copolymer Membrane Containing Sulfonated Poly(ether sulfone) and p-Phenylene Terephthalamide Segments (Sulfonated Poly(ether sulfone)과 p-Phenylene Terephthalamide 세그먼트를 포함하는 가교 공중합체 멤브레인의 제조 및 특성 연구)

  • Kim, Jung-Min;Hwang, Seung-Sik;Cho, Chang-Gi
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.106-112
    • /
    • 2011
  • Aromatic copolyamides were prepared and their applicability to proton exchange membrane was studied. The copolymers contain two segments; thermally stable and mechanically strong poly (p-phenylene terephthalamide) (PPTA), and easily processable and good film-forming polysulfone. For the copolymers, different ratios of amine-terminated sulfonated ether sulfone monomer, terephthaloyl chloride, and p-phenylene diamine were sequentially reacted. The obtained copolymers were mixed with trimethylolpropane triglycidyl ether (TMPTGE), thermally cured, and converted into proton exchange membranes for fuel cell application. The reactions at each step and the molecular characteristics of precursor copolymers were confirmed by $^1H$ NMR, FTIR, and titration. The performance of the membranes was measured in terms of water uptake and proton conductivity. The water uptake, ion exchange capacity (IEC), and proton conductivity of the membranes increased with the increase of sulfonated ether sulfone segment content. Membrane containing 60 mol% sulfonic acid sulfone segment showed 1.88 meq/g IEC value. Water uptake was limited less than 110 wt% and the highest proton conductivity was up to $7.4{\times}10^{-2}$ S/cm ($25^{\circ}C$, RH=100%).