Synthesis of Crosslinkable m-Aramid Ionomer Containing Sulfonated Ether Sulfone and Their Characterization for PEMFC Membrane

Sulfonated Ether Sulfone을 포함한 Crosslinkable m-Aramid계 Ionomer의 합성과 연료전지 막으로의 이용

  • Jung, Hyun-Jin (Department of Fiber & Polymer Engineering, Hanyang University) ;
  • Kim, Jung-Min (Department of Fiber & Polymer Engineering, Hanyang University) ;
  • Cho, Chang-Gi (Department of Fiber & Polymer Engineering, Hanyang University)
  • 정현진 (한양대학교 섬유고분자공학과) ;
  • 김정민 (한양대학교 섬유고분자공학과) ;
  • 조창기 (한양대학교 섬유고분자공학과)
  • Received : 2009.12.09
  • Accepted : 2010.01.23
  • Published : 2010.05.25

Abstract

Aromatic copolyamides were prepared and their applicability to proton exchange membrane wasstudied. The copolymer contains thermally stable and mechanically strong poly(m-phenylene isophthalamide) segments, and easily processable and good film forming polysulfone segments. For the copolymer, amineterminated sulfonated ether sulfone monomer, m-phenylene diamine, and isophthaloyl chloride were reacted, and the obtained copolymer was transformed into crosslinkable prepolymer by the reaction with acryloyl chloride. The prepolymer was thermally cured and converted into proton exchange membranes for fuel cell application. Each reaction step and the molecular characteristics of precursor copolymers were monitored and confirmed by $^1H$ NMR, FTIR, and titration. The performance of the membranes was measured in terms of water uptake, proton conductivity, and thermal stability. The water uptake, ion exchange capacity (IEC), and proton conductivity of the membranes increased with the increase of sulfonated ether sulfone segment content. Membrane containing 30 mol% sulfonic acid sulfone segment showed 1.57 meq/g IEC value. Water uptake was limited less than 44 wt% and the highest proton conductivity up to $3.93{\times}10^{-2}S/cm$ ($25^{\circ}C$, RH= 100%) was observed.

열적 안정성과 기계적 강도에서 우수한 장점을 지니고 있는 메타계 aramid segment와 제막 특성이 우수하고 내가수분해성이 우수한 sulfone segment로 이루어진 공중합체를 이용하여 연료 전지용 막으로서의 응용가능성을 연구하였다. 아라미드 고분자의 solubility와 processability를 향상시키기 위해 아민기를 갖는 sulfonated ether sulfone단량체와 m-phenylene diamine 그리고 isophthaloyl chloride를 반응시켜 아민으로 말단화된 랜덤공중합체를 합성하고 이것을 acryloyl chloride와 반응시켜 양 말단에 2중 결합이 도입된 고분자전구체를 합성하였다. 얻어진 고분자전구체는 열 가교를 통해 고분자 전해질 막으로 제조되었으며, 전구체의 합성을 비롯한 각 단계의 반응은 $^1H$ NMR, FTIR, 및 적정에 의하여 확인되었다. 얻어진 전해질막은 이온교환용량과 함수율, 수소이온전도도, 열적 특성 등이 측정되었으며, sulfonated ether sulfone 단량체의 함유량이 증가할수록 이온교환용량, 함수율, 수소이온전도도가 증가하는 것이 관찰되었다. Sulfonic acid sulfone segment를 30 몰%로 갖는 고분자 전해질 막의 경우 이온교환용량이 1.57 meq/g, 함수율은 44 wt% 이하의 수치를 보였으며, 가장 높은 수소이온전도도의 값은 상대습도 100%, $25^{\circ}C$에서 $3.93{\times}10^{-2}S/cm$이었다.

Keywords

References

  1. K. D. Kreuer, "Hydrocarbon Membrane", in Handbook of Fuel Cells: Fundamentals, Technology. Applications, John Wiley and Sons, Inc., England, Vol 3, p 420, Chapter 33 (2003).
  2. J. S. Kim, R. J. Jackman, and A. Eisenberg, Macromolecules, 27, 2789 (1994). https://doi.org/10.1021/ma00088a021
  3. M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, and J. E. McGrath, Chem. Rev., 104, 4587 (2004). https://doi.org/10.1021/cr020711a
  4. A. Taeger, C. Vogel, D. Lehmann, D. Jehnichen, H. Kornber, J. Meier-Haack, N. A. Ochoa, S. P. Nunes, and K. V. Peinemann, React. Funct. Polym., 57, 77 (2003). https://doi.org/10.1016/j.reactfunctpolym.2003.10.001
  5. C. Vogel, J. Meier-Haack, A. Taeger, and D. Lehmann, Fuel Cells, 4, 320 (2004). https://doi.org/10.1002/fuce.200400035
  6. J. Meier-Haack, A. Taeger, C. Vogel, K. Schlenstedt, W. Lenk, and D. Lehmann. Sep. Purifi. Technol., 41, 207 (2005). https://doi.org/10.1016/j.seppur.2004.07.018
  7. S. Viale, W. F. Jager, and S. J. Picken, Polymer, 44, 7843 (2003). https://doi.org/10.1016/j.polymer.2003.10.016
  8. S. Viale, A. S. Best, E. Mendes, W. F. Jager, and S. J. Picken, Chem. Commun., 14, 1596 (2004).
  9. S. Viale, N. Li, A. H. M. Schotman, A. S. Best, and S. J. Picken, Macromolecules, 38, 3647 (2005). https://doi.org/10.1021/ma0475636
  10. S. Viale, A. S. Best, E. Mendes, and S. J. Picken, Chem. Commun., 12, 1528 (2005).
  11. C. Sisbandini, H. A. Every, S. Viale, E. Mendes, and S. J. Picken J. Polym. Sci. Part B: Polym. Phys., 45, 666 (2007) . https://doi.org/10.1002/polb.21082
  12. S. Konagaya and M. Tokai. J. Appl. Polym. Sci., 76, 913 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000509)76:6<913::AID-APP18>3.0.CO;2-1
  13. S. Konagata, M. Tokai, and H. Kuzumoto. J. Appl. Polym. Sci., 80, 505 (2001). https://doi.org/10.1002/1097-4628(20010425)80:4<505::AID-APP1124>3.0.CO;2-S
  14. S. Konagata, H. Kuzumoto, and O. Watanabe, J. Appl. Polym. Sci., 75, 1357 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000314)75:11<1357::AID-APP6>3.0.CO;2-W
  15. J. H. Chen, M. Asano, T. Yamaki, and M. Yoshida, J. Power Sources, 158, 69 (2006). https://doi.org/10.1016/j.jpowsour.2005.09.024
  16. J. L. Qiao, T. Hamaya, and T. Okada. Polymer, 46, 10809 (2005). https://doi.org/10.1016/j.polymer.2005.09.007
  17. S. L. Chen, J. B. Benziger, A. B. Bocarsly, and T. Zhang, J. Ind. Eng. Chem., 44, 7701 (2005). https://doi.org/10.1021/ie050015b
  18. M. Doytcheva, R. Stamenova, V. Zvetkov, and C. B. Tsvetanov, Polymer, 39, 6715 (1998). https://doi.org/10.1016/S0032-3861(98)00133-5
  19. C. Decker, and T. N. T. Viet, Macromol. Chem. Phys., 200, 358 (1999). https://doi.org/10.1002/(SICI)1521-3935(19990201)200:2<358::AID-MACP358>3.0.CO;2-V
  20. Y. Liu, J. Y. Lee, and L. Hong, J. Power Sources, 129, 303 (2004). https://doi.org/10.1016/j.jpowsour.2003.11.026
  21. W. Cui, J. Kerres, and G. Eigenberger, Sep. Purifi. Technol., 14, 145 (1998). https://doi.org/10.1016/S1383-5866(98)00069-0
  22. J. Kerres, W. Cui, and S. Reichle, J. Polym. Sci. Part A: Polym. Chem., 34, 2421 (1996). https://doi.org/10.1002/(SICI)1099-0518(19960915)34:12<2421::AID-POLA17>3.0.CO;2-A
  23. S. Fenga, Y. Shanga, S. Wanga. X. Xiea, Y. Wanga, Y. Wanga, and J. Xua, J. Membr. Sci., 346, 105 (2010). https://doi.org/10.1016/j.memsci.2009.09.026
  24. P. Xing, G. P. Robertson, M. D. Guiver, S. D. Mikhailenko, K. Wang, and S. Kaliaguine, J. Membr. Sci., 229, 95 (2004). https://doi.org/10.1016/j.memsci.2003.09.019
  25. S. D. Mikhailenko, K. Wang, S. Kaliaguine, P. Xing, G. P. Robertson, and M. D. Guiver, J. Membr. Sci., 233, 93 (2004). https://doi.org/10.1016/j.memsci.2004.01.004
  26. J. A. Kerres, W. Cui, and M. Junginger, J. Membr. Sci., 139, 227 (1998). https://doi.org/10.1016/S0376-7388(97)00254-8
  27. M. H. Jeong, K. S. Lee, and J. S. Lee, Macromolecules, 42, 1652 (2009). https://doi.org/10.1021/ma8024199
  28. K. S. Lee, M. H. Jeong, J. P. Lee, and J. S. Lee, Macromolecules, 42, 584 (2009). https://doi.org/10.1021/ma802233j
  29. S. D. Park, Y. J. Chang, J. C. Chung, W. Lee, H. Kim, and J. C. Chung, Macromol. Symp., 249, 202 (2007).
  30. Y. S. Oh, H. J. Lee, M. J. Yoo, H. J. Kim, J. H. Han, and T. H. Kim, J. Membr. Sci., 323, 309 (2008). https://doi.org/10.1016/j.memsci.2008.06.024
  31. Y. S. Oh, H. J. Lee, M. J. Yoo, H. J. Kim, J. H. Han, K. W. Kim, J. D. Hong, and T. H. Kim, Chem. Commun., 2028 (2008).
  32. R. Kaneko, M. Jikei, and M. Kakimoto, High Performance Polym., 14, 53 (2002). https://doi.org/10.1177/0954008302014001451
  33. Y. H. Kwon, S. C. Kim, and S. Y. Lee, Macromolecules, 42, 5244 (2009). https://doi.org/10.1021/ma900781c
  34. L. A. Ford, D. D. DesMarteau, and D. W. Smith Jr., J. Fluorine Chem., 126, 653 (2005).
  35. Y. Li, R. A. VanHouten, A. E. Brink, and J. E. McGrath, Polymer, 49, 3014 (2008). https://doi.org/10.1016/j.polymer.2008.04.043
  36. B. R. Einsla, Y. T. Hong, Y. S. Kim, F. Wang, N. Gunduz, and J. E. McGrath, J. Polym. Sci. Part A: Polym. Chem., 42, 862 (2004). https://doi.org/10.1002/pola.11026
  37. E. J. Blanchard and E. E. Graves, Tex. Res. J., 73, 22 (2003). https://doi.org/10.1177/004051750307300104
  38. T. A. Zawodzinski, M. Neeman, L. O. Sillerud, and S. Gottesfeld, J. Phys. Chem., 95, 6040 (1991). https://doi.org/10.1021/j100168a060