• Title/Summary/Keyword: polystyrene (PS)

Search Result 328, Processing Time 0.03 seconds

Preparation and Structure of the Synthetic Polymeric Membranes based on Polystyrene and Poly(sodium 4-styrene sulfonate) (Polystyrene과 Poly(sodium 4-styrene sulfonate)를 이용한 합성 고분자 분리막의 제막 및 구조)

  • 변홍식;탁태문
    • Membrane Journal
    • /
    • v.6 no.4
    • /
    • pp.273-283
    • /
    • 1996
  • A cation-exchange membranes were prepared by polystyrene and poly(sodium 4-styrene sulfonate). The degree of crosslinking of polystyrene membranes was controlled by DVB. At the same time, the structure of PS membranes was changed from RO to MF by varying the concentration of PSS in the casting solution. Water flux increased with PS-PSS membranes due to the sulfonate groups, and final membrane cast from the solution containing 5% of DVB and 3% of PSS showed MF structure.

  • PDF

Synthesis and Characterization of Polystyrene-b-Poly(acrylic acid) Block Ionomer via Atom Transfer Radical Polymerization (원자 이동 라디칼 중합을 이용한 Polystyrene-b-Poly(acrylic acid) 블록 이오노머의 합성 및 분석)

  • 박계리;안성국;조창기
    • Polymer(Korea)
    • /
    • v.27 no.1
    • /
    • pp.17-25
    • /
    • 2003
  • Using atom transfer radical polymerization (ATRP), polystyrene macroinitiators and polystyrene-b-poly(t-butyl acrylate) (PS-b-P(tBA) block copolymers were synthesized by CuBr/PMDETA catalyst system in solution. After hydrolysis, polystyrene-b-poly(acrylic acid), amphiphilic block copolymers, were formed. Subsequent neutralization of polyacid block led to the block ionomers. The molecular weight of the synthesized PS-b-P(tBA) block copolymers was easily-controlled to 5000-10000 and their distributions were less than 1.2. The chemical structures of the synthesized block copolymers were characterized by $^1$H-NMR and FT-IR. In the DSC thermograms, $T_g$ appeared in the vicinity of 100 $^{\circ}C$ because of higher styrene content. In addition, the phase separation of the block ionomers was observed by TEM.

Liquefaction Characteristics of Polypropylene-Polystyrene Mixture by Pyrolysis at Low Temperature (Polypropylene-Polystyrene 혼합물의 저온 열분해에 의한 액화특성)

  • Cho, Sung-Hyun;Kim, Chi-Hoi;Kim, Su-Ho;Lee, Bong-Hee
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.26-32
    • /
    • 2010
  • The low temperature pyrolysis of polypropylene (PP), polystyrene (PS) and polypropylene-polystyrene (PP-PS) mixture in a batch reactor at the atmospheric pressure and $450^{\circ}C$ was conducted to investigate the synergy effect of PP-PS mixture on the yield of pyrolytic oil. The pyrolysis time was varied from 20 to 80 mins. The products formed during pyrolysis were classified into gas, gasoline, kerosene, gas oil and heavy oil according to the petroleum product quality standard of Ministry of Knowledge Economy. The analysis of the product oils by GC/MS(Gas chromatography/Mass spectrometry) showed that new components were not detected by mixing of PP and PS. There was no synergy effect according to the mixing of PP and PS. Conversions and yields of PP-PS mixtures were linearly dependent on the mixing ratio of samples except for heavy oil yields. Heavy oil yields showed almost constant regardless of the mixing ratio.

Fabrication and Characterization of Polystyrene/Gold Nanoparticle Composite Nanofibers

  • Kim, Jung-Kil;Ahn, Hee-Joon
    • Macromolecular Research
    • /
    • v.16 no.2
    • /
    • pp.163-168
    • /
    • 2008
  • Polystyrene/gold nanoparticle (PS/AuNP) composite fibers were fabricated using an electrospinning technique. Transmission electron microscopy (TEM) showed that the diameters of the naphthalenethiol-capped gold nanoparticles (prior to incorporation into the PS fibers) ranged from 2 to 5 nm. UV-vis spectroscopy revealed the surface plasmon peaks of the gold nanoparticles centered at approximately 512 nm, indicating that nano-sized Au particles are well-dispersed in solution. This was consistent with the TEM observations. The electrospun nanofibers of PS/AuNP composites were approximately 60-3,000 nm in diameter. The surface morphology of the PS/AuNP composite and the dispersability of the Au nanoparticles inside of PS after electrospinning process were investigated by SEM and TEM. The thermal behavior of the pure PS and PS/AuNP nanocomposites and fibers were examined by DSC.

PREPARATION OF POLYSTYRENE BEADS CONTAINING SULFONAMIDE GROUPS AND THEIR APPLICATION TO POLYMERIC BIOCIDES

  • Kim, Cheol-Jin;Kim, Jee-Yeon;Byun, Jang-Woong;Kim, Jae-Eun;Lee, Yoon-Sik;Yoon, Je-Yong
    • Environmental Engineering Research
    • /
    • v.11 no.6
    • /
    • pp.325-332
    • /
    • 2006
  • A novel series of polystyrene (PS) beads containing various sulfonamide groups was prepared, and their chemical stabilities in an aqueous solution were tested in order to determine their ability to inactivate microbes. By reacting aminomethyl polystyrene (AM PS) beads or carboxy polystyrene beads with various benzenesulfonic acid derivatives, the sulfonamide groups were introduced on the PS beads. The characteristics of the product beads were analyzed by elementary analysis after the substitution of various sulfonamide groups. Energy Dispersive Spectroscopy (EDS), and FT-IR analysis were used to analyze the elemental functional group composition, respectively. The hydrolytic stabilities of the PS beads containing various sulfonamide groups along with the relationship between the swelling ratio and their hydrophilicity were investigated. The antibacterial activity of the beads was determined by their ability to inactivate E. coli. This study reports that PS beads containing sulfonamide groups had lasting antibacterial efficacy over a satisfactory period, whilst maintaining their chemical stabilities against hydrolysis. The 8 synthesized polymer beads exhibited antibacterial ability.

The morphology and mechanical properties of the blends of syndiotactic polystyrene and polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene copolymers

  • O, Hyun-Tack;Kim, Hwang-Ryong;Kim, Jin-Kon;Park, Joon-Young
    • Korea-Australia Rheology Journal
    • /
    • v.13 no.2
    • /
    • pp.83-87
    • /
    • 2001
  • The morphology and mechanical properties of the blends of a syndiotactic polystyrene (SPS) and poly-styrene-block-poly(ethylene-co-butylene)-block-polystyrene copolymers (SEBS) with various polystyrene block contents are studied. Mechanical properties, especially elongation at break and impact strength (IS), of the blend depend upon the morphology and interfacial adhesion, which in rum are affected by the viscosity ratio of constituent components and the styrene block content in SEBS. The IS of a blend was affected by the combined effect of rubber content and the interfacial adhesion. A maximum IS was found for a blend with the weight fraction of the PS block in an SEBS of 0.18. The IS of blends with smaller weight fractions of the PS block exhibited lower due to poor interfacial adhesion between SPS/SEBS in spite of a larger amount of rubber block. On the other hand, the IS of blends with larger weight fraction of the PS block becomes smaller due to lower amounts of rubber block in spite of better interfacial adhesion.

  • PDF

Deformation Behavior in Compatible Polymer Blends (고분자블렌드에서의 변형거동)

  • 전병철
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1992.05a
    • /
    • pp.121-121
    • /
    • 1992
  • Deformation behavior of compatible polymer blends was studied using scanning electron, optical, and transmission electron microscopies. Four different compatible systems were employed and charaterized in this investigation : polystyrene(PS) and polyphenylene oxide(PPO), polystyrene(PS) and polyvinlmethylether(PVME), polystyrene(PS) and poly $\alpha$-methylstyrene(P$\alpha$MS). Individual craze and shear deformation zone microstructures were examined by transmission microscopy (TEM). For TEM observations, specimens deformed in-situ on a TEM grid were utilized. Quantiative analysis of these crazes and shear deformation zones was obtained from the nicrodensitometry of the TEM negatives in the manner developed by Lauterwasser and Kramer. Microdensitometry resulys showed that the fibril extension ratio decreased as the PPO content increased in the PS/PPO blends, and finally, for 100% PPO, only shear deformation zones were observed. For the PS/PVME blends, the ribril extension ratio also decreased as the VME content increased. For the PS/P$\alpha$MS blends, the fibril extension ratio increased as the P$\alpha$MS content increased, For the PPO/P$\alpha$MS blends, the fibril extension ratio increased as the P$\alpha$MS content increased.

  • PDF

A study on the Shrinkage Reduction and Strengths of Unsaturated Polyester Mortar (불포화 폴리에스테르 레진 모르타르의 수축저감 및 강도특성에 관한 연구)

  • 최낙운;최길섭;김완기;조영국;소양섭
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.343-348
    • /
    • 1999
  • The purpose of this study is to evaluated the effects of added expanded polystyrene on the basic properties of UP mortar. Polyester resin mortars are prepared with expanded polystyrene ratio in styrene monomer (EPS/PS), and the ratio of total polystyrene resin to UP resin (PS/UP). And it is tested for viscosity of UP resin added PS resin, slump-flow test, working life, flexural and compressive strengths, and curing shrinkage test. From the test result, Viscosity of resin for polymer mortar increases with increasing PS content. Curing shrinkage of UP mortar is considerably smaller than that of plain UP mortar, nevertheless, reduction in the strengths is not recognized according to adding PS resin. In this study, we can obtain the optimum mix proportions of polymer mortar using PS resin.

  • PDF

Tribological and rheological tests of core-shell typed carbonyl iron/polystyrene particle-based magnetorheological fluid

  • Zhang, Peng;Dong, Yu Zhen;Choi, Hyoung Jin;Lee, Chul-Hee
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.342-349
    • /
    • 2018
  • Polystyrene (PS) was coated on carbonyl iron (CI) particles via dispersion polymerization to produce core-shell structured CI/PS particles and adopted as magnetorheological (MR) material. Two MR fluids were prepared by dispersing CI/PS and CI particles in silicone oil. Their MR and tribological properties were investigated using a rheometer and a reciprocating friction and wear tester, respectively. Experimental data showed that tribological properties of MR fluid based on CI/PS particles are significantly enhanced compared to those of CI based MR fluid. Sedimentation problem of CI/PS MR fluid was also expected to be improved due to relatively lower density of CI/PS particles.

Performance Improvement of TIPS-pentacene OTFTs by blending with Polystyrene (절연고분자 polystyrene 혼합에 의한 TIPS-pentacene OTFT의 성능 개선)

  • Kim, Jae Seon;Song, Chung Kun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.96-101
    • /
    • 2013
  • In this paper we analyzed the effects of polystyrene(PS) blended in TIPS-pentacene on the performance of OTFTs. With the various molecular weight and the content of PS the performance of TIPS-pentacene OTFTs was examined and the proper molecular weight and the content were extracted for the best results. With the molecular weight of 9,580 and 0.3 wt% of PS OTFTs produced the mobility of $1.0{\pm}0.19cm^2/V{\cdot}sec$, the subthreshold slope $0.22{\pm}0.05$ V/dec, the threshold voltage $-1.19{\pm}1.21$ V, the current on/of ratio $7.12{\pm}2.09{\times}10^6$. Additionally the suitable substrate temperature for ink jet printing of the blended TIPS-pentacene OTFTs was also extracted and it was $46^{\circ}C$.