• Title/Summary/Keyword: polypyridyl dye

Search Result 4, Processing Time 0.016 seconds

Synthesis and Photovoltaic Performance of Long Wavelength Absorption Dyes for the Dye Sensitized Solar Cell (장 파장 대 태양광을 흡수하는 염료감응형태양전지에 대한 염료와 합성)

  • Kim, Sangah;Yoon, Jooyoung;Kim, Jaehong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.89.2-89.2
    • /
    • 2010
  • The dye-sensitized solar cell (DSSC) is a device for the conversion of visible light into electricity, based on the sensitization of wide bandgap semiconductors. The performance of the cell mainly depends on a dye used as sensitizer. The absorption spectrum of the dye and the anchorage of the dye to the surface of $TiO_2$ are important parameters determining the efficiency of the cell. Generally, transition metal coordination compounds(ruthenium polypyridyl complexes) are used as the effective sensitizers, due to their intense charge-transfer absorption in the whole visible range and highly efficient metal-to ligand charge transfer. However, ruthenium polypyridyl complexes contain a heavy metal, which is undesirable from point of view of the environmental aspects. Moreover, the process to synthesize the complexes is complicated and costly. Alternatively, organic dyes can be used for the same purpose with an acceptable efficiency. The advantages of organic dyes include their availability and low cost. We designed and synthesized a series of organic sensitizers containing long wavelength absorption-chromophores for the dye sensitized solar cell. The DSSC composed of Blue-chromophores for the sensitization absorbed long wavelength region which is different also applied into the dye-cocktail (mixing) system. The photovoltaic property of DSSCs organic long wavelength absorption-chromophores were measured and evaluated by comparison with that of individual chromophores.

  • PDF

Synthesis and Photovoltaic Performance of NIR Absorption Dyes for the Dye Sensitized Solar Cell (NIR 흡수 염료를 이용한 염료감응형 태양전지)

  • Kim, Sangah;Jung, Miran;Lee, Minkyung;Kim, Jaehong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.118.1-118.1
    • /
    • 2011
  • The dye-sensitized solar cell (DSSC) is a device for the conversion of visible light into electricity, based on the sensitization of wide bandgap semiconductors. The performance of the cell mainly depends on a dye used as sensitizer. The absorption spectrum of the dye and the anchorage of the dye to the surface of TiO2 are important parameters determining the efficiency of the cell. Generally, transition metal coordination compounds(ruthenium polypyridyl complexes) are used as the effective sensitizers, due to their intense charge-transfer absorption in the whole visible range and highly efficient metal-to ligand charge transfer. However, ruthenium polypyridyl complexes contain a heavy metal, which is undesirable from point of view of the environmental aspects. Moreover, the process to synthesize the complexes is complicated and costly. Alternatively, organic dyes can be used for the same purpose with an acceptable efficiency. The advantages of organic dyes include their availability and low cost. We designed and synthesized a series of organic sensitizers containing long wavelength absorption-chromophores for the dye sensitized solar cell. The DSSC composed of Blue-chromophores for the sensitization absorbed long wavelength region which is different also applied into the dye-cocktail (mixing) system. The photovoltaic property of DSSCs organic long wavelength absorption-chromophores were measured and evaluated by comparison with that of individual chromophores.

  • PDF

Selective Metal Ion Sensing of Bipyridine-Bisterpyridine containing Fluorescent Dyes (다중 피리딘 구조를 가지는 형광염료의 금속 이온 반응성에 대한 연구)

  • Zo, Hye Jin;Kim, Arong;Jeong, Sooyeon;Park, Jong S.
    • Textile Coloration and Finishing
    • /
    • v.25 no.4
    • /
    • pp.254-261
    • /
    • 2013
  • In this study, we synthesized a new fluorescent polypyridyl dye 2 containing a 2,2'-bipyridine in the center and two 2,2':6',2"-terpyridines at both ends. When exposed to various metal ions, the dye 2 showed selective fluorescence responses. In the presence of $Cu^{2+}$ and $Ni^{2+}$, it exhibited a highly effective fluorescence quenching, leading to large $K_{sv}$ values of up to $10^5$. In response to most other metal ions including $Al^{3+}$, in contrast, its fluorescence changes little, showing a small Ksv value at $10^2$. Meanwhile, the compound 2 revealed a differentiated fluorescence response to $Zn^{2+}$, which is evidenced by a large red shift of > 100 nm. Such a red shift from the ion binding is attributed to the planarization of the bipyridyl unit extending the effective conjugation length in conjunction. A polypyridyl compound will find important usefulness in chemosensor application due to its selective binding to metal ions. Subsequent research concerned with modified derivatives is currently going on, as a way to provide high solubility even after metal-complexing.

Synthesis and Application of New Ru(II) Complexes for Dye-Sensitized Nanocrystalline TiO2 Solar Cells

  • Seok, Won-K.;Gupta, A.K.;Roh, Seung-Jae;Lee, Won-Joo;Han, Sung-Hwan
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.8
    • /
    • pp.1311-1316
    • /
    • 2007
  • To develop photo-sensitizers for dye-sensitized solar cells (DSCs) used in harvesting sunlight and transferring solar energy into electricity, we synthesize novel Ru(II) polypyridyl dyes and describe their characterization. We also investigate the photo-electrochemical properties of DSCs using these sensitizers. New dyes contain chromophore unit of dafo (4,5-diazafluoren-9-one) or phen-dione (1,10-phenanthroline-5,6-dione) instead of the nonchromophoric donor unit of thiocyanato ligand in cis-[RuII(dcbpy)2(NCS)2] (dcbpy = 4,4'-dicarboxy- 2,2'-bipyridine) coded as N3 dye. For example, the photovoltaic data of DSCs using [RuII(dcbpy)2(dafo)](CN)2 as a sensitizer show 6.85 mA/cm2, 0.70 V, 0.58 and 2.82% in short-circuit current (Jsc ), open-circuit voltage (Voc), fill factor (FF) and power conversion efficiency (Eff), which can be compared with those of 7.90 mA/ cm2, 0.70 V, 0.53 and 3.03% for N3 dye. With the same chelating ligand directly bonded to the Ru metal in the complex, the CN ligand increases the Jsc value by double, compared to the SCN ligand. The extra binding ability in these new dyes makes them more resistant against ligand loss and photo-induced isomerization within octahedral geometry.