• Title/Summary/Keyword: polyphasic analysis

Search Result 48, Processing Time 0.02 seconds

Geminocystis urbisnovae sp. nov. (Chroococcales, Cyanobacteria): polyphasic description complemented with a survey of the family Geminocystaceae

  • Elena Polyakova;Svetlana Averina;Alexander Pinevich
    • ALGAE
    • /
    • v.38 no.2
    • /
    • pp.93-110
    • /
    • 2023
  • Progress in phylogenomic analysis has led to a considerable re-evaluation of former cyanobacterial system, with many new taxa being established at different nomenclatural levels. The family Geminocystaceae is among cyanobacterial taxa recently described on the basis of polyphasic approach. Within this family, there are six genera: Geminocystis, Cyanobacterium, Geminobacterium, Annamia, Picocyanobacterium, and Microcrocis. The genus Geminocystis previously encompassed two species: G. herdmanii and G. papuanica. Herein, a new species G. urbisnovae was proposed under the provision of the International Code of Nomenclature for algae, fungi, and plants (ICN). Polyphasic analysis was performed for five strains from the CALU culture collection (St. Petersburg State University, Russian Federation), and they were assigned to the genus Geminocystis in accordance with high 16S rRNA gene similarity to existing species, as well as because of proximity to these species on the phylogenetic trees reconstructed with RaxML and Bayes methods. Plausibility of their assignment to a separate species of the genus Geminocystis was substantiated with smaller cell size; stenohaline freshwater ecotype; capability to complementary chromatic adaptation of second type (CA2); distinct 16S rRNA gene clustering; sequences and folding of D1-D1' and B box domains of the 16S-23S internal transcribed spacer region. The second objective pursued by this communication was to provide a survey of the family Geminocystaceae. The overall assessment was that, despite attention of many researchers, this cyanobacterial family has been understudied and, especially in the case of the crucially important genus Cyanobacterium, taxonomically problematic.

First record of the cyanobacterial genus Wilmottia (Coleofasciculaceae, Oscillatoriales) from the South Orkney Islands (Antarctica)

  • Radzi, Ranina;Merican, Faradina;Broady, Paul;Convey, Peter;Muangmai, Narongrit;Omar, Wan Maznah Wan;Lavoue, Sebastien
    • ALGAE
    • /
    • v.36 no.2
    • /
    • pp.111-121
    • /
    • 2021
  • Two cyanobacterial morphotypes isolated from Signy Island, South Orkney Islands, maritime Antarctica were characterised using a polyphasic approach combining morphological, cytological and molecular analyses. These analyses showed that the strains grouped with members of the genus Wilmottia. This genus currently includes three species, W. murrayi, W. stricta, and W. koreana. Both morphotypes analysed in this study were placed within the clade of W. murrayi. This clade showed a well-supported separation from Antarctic and New Zealand strains, as well as strains from other regions. W. murrayi was first described from Antarctica and is now known from several Antarctic regions. Confirmation of the occurrence of W. murrayi at Signy Island significantly extends its known distribution in Antarctica. In addition, a new combination, W. arthurensis, is suggested for Phormidium arthurensis.

Characterization of Interphase Microbial Community in Luzhou-Flavored Liquor Manufacturing Pits of Various Ages by Polyphasic Detection Methods

  • Li, Hui;Huang, Jun;Liu, Xinping;Zhou, Rongqing;Ding, Xiaofei;Xiang, Qianyin;Zhang, Liqiang;Wu, Chongde
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.130-140
    • /
    • 2017
  • It is vital to understand the changing characteristics of interphase microbial communities and interspecies synergism during the fermentation of Chinese liquors. In this study, microbial communities in the three indispensable phases (pit mud, zaopei, and huangshui) of Luzhou-flavored liquor manufacturing pits and their shifts during cellars use were first investigated by polyphasic culture-independent approaches. The archaeal and eubacterial communities in the three phases were quantitatively assessed by combined phospholipid ether lipids/phospholipid fatty acid analysis and fluorescence in situ hybridization. In addition, qualitative information regarding the microbial community was analyzed by PCR-denaturing gradient gel electrophoresis. Results suggested that the interphase microbial community profiles were quite different, and the proportions of specific microbial groups evolved gradually. Anaerobic bacteria and gram-positive bacteria were dominant and their numbers were higher in pit mud ($10^9$ cells/g) than in huangshui ($10^7$ cells/ml) and zaopei ($10^7$ cells/g). Hydrogenotrophic methanogenic archaea were the dominant archaea, and their proportions were virtually unchanged in pit mud (around 65%), whereas they first increased and then decreased in zaopei (59%-82%-47%) and increased with pit age in huangshui (82%-92%). Interactions between microbial communities, especially between eubacteria and methanogens, played a key role in the formation of favorable niches for liquor fermentation. Furthermore, daqu (an essential saccharifying and fermentative agent) and metabolic regulation parameters greatly affected the microbial community.

Amazonocrinis thailandica sp. nov. (Nostocales, Cyanobacteria), a novel species of the previously monotypic Amazonocrinis genus from Thailand

  • Tawong, Wittaya;Pongcharoen, Pongsanat;Pongpadung, Piyawat;Ponza, Supat;Saijuntha, Weerachai
    • ALGAE
    • /
    • v.37 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • Cyanobacteria are distributed worldwide, and many new cyanobacterial species are discovered in tropical region. The Nostoc-like genus Amazonocrinis has been separated from the genus Nostoc based on polyphasic methods. However, species diversity within this genus remains poorly understood systematically because only one species (Amazonocrinis nigriterrae) has been described. In this study, two novel strains (NUACC02 and NUACC03) were isolated from moist rice field soil in Thailand. These two strains were characterized using a polyphasic approach, based on morphology, 16S rRNA phylogenetic analysis, internal transcribed spacer secondary structure and ecology. Phylogenetic analyses based on 16S rRNA gene sequences confirmed that the two novel strains formed a monophyletic clade related to the genus Amazonocrinis and were distant from the type species A. nigriterrae. The 16S rRNA gene sequence similarity (<98.1%) between novel strains and all other closely related taxa including the Amazonocrinis members exceeded the cutoff for species delimitation in bacteriology, reinforcing the presence of a new Amazonocrinis species. Furthermore, the novel strains possessed unique phenotypic characteristics such as the presence of the sheath, necridia-like cells, larger cell dimension and akinete cell arrangement in long-chains and the singularity of D1-D1', Box-B, V2, and V3 secondary structures that distinguished them from other Amazonocrinis members. Considering all the results, we described our two strains as Amazonocrinis thailandica sp. nov. in accordance with the International Code of Nomenclature for Algae, Fungi and Plants.

Cohnella panacarvi sp. nov., a Xylanolytic Bacterium Isolated from Ginseng Cultivating Soil

  • Yoon, Min-Ho;Ten, Leonid N.;Im, Wan-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.913-918
    • /
    • 2007
  • A Gram-positive, aerobic, rod-shaped, nonmotile, endospore-forming bacterium, designated Gsoil $349^T$, was isolated from soil of a ginseng field and characterized using a polyphasic approach. Comparative analysis of 16S rRNA gene sequences revealed that the strain Gsoil $349^T$ belongs to the family Paenibacillaceae, and the sequence showed closest similarity with Cohnella thermotolerans DSM $17683^T$ (94.1%) and Cohnella hongkongensis DSM $17642^T$ (93.6%). The strain showed less than 91.3% 16S rRNA gene sequence similarity with Paenibacillus species. In addition, the presence of MK-7 as the major menaquinone and $anteiso-C_{15:0},\;iso-C_{16:0},\;and\;C_{16:0}$ as major fatty acids suggested its affiliation to the genus Cohnella. The G+C content of the genomic DNA was 53.4 mol%. On the basis of its phenotypic characteristics and phylogenetic distinctiveness, strain Gsoil $349^T$ should be treated as a novel species within the genus Cohnella for which the name Cohnella panacarvi sp. nov. is proposed. The type strain is Gsoil $349^T\;(=KCTC\;13060^T=\;DSM\;18696^T)$.

Pedobacter xinjiangensis sp. nov., from the Desert, Xinjiang

  • Tang, Yali;Wang, Yang;Ji, Shanming;Zhang, Kundi;Dai, Jun;Zhang, Lei;Peng, Fang;Fang, Chengxiang
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.2
    • /
    • pp.397-402
    • /
    • 2010
  • A Gram-negative, rod-shaped, gliding, aerobic bacterium, designated $12157^T$, was isolated from the desert of Xinjiang, China and subjected to a polyphasic taxonomic study. The strain $12157^T$ grew optimally at pH 7.0 and $30^{\circ}C$. MK-7 was the predominant respiratory menaquinone. The DNA G+C content was 42.0 mol%. Phylogenetic analysis based on the 16S rRNA gene sequences showed that the isolate was mostly related to members of the genus Pedobacter, with similarities ranging from 90.0% to 93.7%. Phylogenetic evidence and the results of phenotypic and genotypic analyses support the establishment of a novel species, Pedobacter xinjiangensis sp. nov., with strain $12157^T$ (=CCTCC AB $208092^T$=NRRL B-$51338^T$) as the type strain.

Comparative Genome analysis of the Genus Curvibacter and the Description of Curvibacter microcysteis sp. nov. and Curvibacter cyanobacteriorum sp. nov., Isolated from Fresh Water during the Cyanobacterial Bloom Period

  • Ve Van Le;So-Ra Ko;Mingyeong Kang;Seonah Jeong;Hee-Mock Oh;Chi-Yong Ahn
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1428-1436
    • /
    • 2023
  • The three Gram-negative, catalase- and oxidase-positive bacterial strains RS43T, HBC28, and HBC61T, were isolated from fresh water and subjected to a polyphasic study. Comparison of 16S rRNA gene sequence initially indicated that strains RS43T, HBC28, and HBC61T were closely related to species of genus Curvibacter and shared the highest sequence similarity of 98.14%, 98.21%, and 98.76%, respectively, with Curvibacter gracilis 7-1T. Phylogenetic analysis based on genome sequences placed all strains within the genus Curvibacter. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the three strains and related type strains supported their recognition as two novel genospecies in the genus Curvibacter. Comparative genomic analysis revealed that the genus possessed an open pangenome. Based on KEGG BlastKOALA analyses, Curvibacter species have the potential to metabolize benzoate, phenylacetate, catechol, and salicylate, indicating their potential use in the elimination of these compounds from the water systems. The results of polyphasic characterization indicated that strain RS43T and HBC61T represent two novel species, for which the name Curvibacter microcysteis sp. nov. (type strain RS43T =KCTC 92793T=LMG 32714T) and Curvibacter cyanobacteriorum sp. nov. (type strain HBC61T =KCTC 92794T=LMG 32713T) are proposed.

Sphingobacterium composti sp. nov., a Novel DNase-Producing Bacterium Isolated from Compost

  • Ten Leonid N.;Liu, Qing-Mei;Im Wan-Taek;Aslam Zubair;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.11
    • /
    • pp.1728-1733
    • /
    • 2006
  • A Gram-negative, strictly aerobic, nonmotile, and nonspore-forming bacterial strain, designated $T5-12^T$, was isolated from compost and characterized using a polyphasic taxonomical approach. The isolate was positive for catalase and oxidase tests. It could degrade DNA, but was negative for degradation of macromolecules such as casein, collagen, starch, chitin, cellulose, and xylan. The DNA G+C content was 36.0 mol%. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The major fatty acids were $iso-C_{15:0}$ (45.6%), $iso-C_{17:0}$ 3OH (17.2%), and summed feature 4 ($C_{16:0}\;{\omega}7c$ and/or $iso-C_{15:0}$ 2OH, 14.9%). Comparative 16S rRNA gene sequence analysis showed that strain $T5-12^T$ fell within the radiation of the cluster comprising members of the genus Sphingobacterium. Strain $T5-12^T$ exhibited lower than 94% of 16S rRNA gene sequence similarity with respect to the type strains of recognized Sphingobacterium species. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain $T5-12^T$ ($=KCTC\;12578^T=LMG\;23401^T=CCUG\;52467^T$) should be classified in the genus Sphingobacterium as the type strain of a novel species, for which the name Sphingobacterium composti sp. novo is proposed.

Caulobacter ginsengisoli sp. nov., a Novel Stalked Bacterium Isolated from Ginseng Cultivating Soil

  • Liu, Qing-Mei;Ten, Leonid N.;Im, Wan-Taek;Lee, Sung-Taik;Yoon, Min-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.1
    • /
    • pp.15-20
    • /
    • 2010
  • A Gram negative, aerobic, nonspore-forming, straight or curved rod-shaped bacterium, designated Gsoil $317^T$, was isolated from soil of a ginseng field in Pocheon Province (South Korea) and was characterized using a polyphasic approach. Cells were dimorphic, with stalk (or prostheca) and nonmotile or nonstalked and motile, by means of a single polar flagellum. Comparative analysis of 16S rRNA gene sequences revealed that strain Gsoil $317^T$ was most closely related to Caulobacter mirabilis LMG $24261^T$ (97.2%), Caulobacter fusiformis ATCC $15257^T$ (97.1 %), Caulobacter segnis LMG $17158^T$ (97.0%), Caulobacter vibrioides DSM $9893^T$ (96.8%), and Caulobacter henricii ATCC $15253^T$ (96.7%). The sequence similarities to any other recognized species within Alphaproteobacteria were less than 96.0%. The detection of Q-10 as the major respiratory quinone and a fatty acid profile with summed feature 7 ($C_{18:1}\;{\omega}7c$ and/or $C_{18:1}\;{\omega}9t$ and/or $C_{18:1}\;{\omega}12t;$ 56.6%) and $C_{16:0}$ (15.9%) as the major fatty acids supported the affiliation of strain Gsoil $317^T$ to the genus Caulobacter. The G+C content of the genomic DNA was 65.5 mol%. DNA-DNA hybridization experiments showed that the DNA-DNA relatedness values between strain Gsoil $317^T$ and its closest phylogenetic neighbors were below 11%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil $317^T$ should be classified as representing a novel species in the genus Caulobacter, for which the name Caulobacter ginsengisoli sp. novo is proposed. The type strain is Gsoil $317^T$ (=KCTC $12788^T=DSM\;18695^T$).

Ramlibacter ginsenosidimutans sp. nov., with Ginsenoside-Converting Activity

  • Wang, Liang;An, Dong-Shan;Kim, Song-Gun;Jin, Feng-Xie;Kim, Sun-Chang;Lee, Sung-Taik;Im, Wan-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.311-315
    • /
    • 2012
  • A novel ${\beta}$-proteobacterium, designated BXN5-$27^T$, was isolated from soil of a ginseng field of Baekdu Mountain in China, and was characterized using a polyphasic approach. The strain was Gram-staining-negative, aerobic, motile, non-spore-forming, and rod shaped. Strain BXN5-$27^T$ exhibited ${\beta}$-glucosidase activity that was responsible for its ability to transform ginsenoside $Rb_1$ (one of the dominant active components of ginseng) to compound Rd. Phylogenetic analysis based on 16S rRNA gene sequences showed that this strain belonged to the family Comamonadaceae; it was most closely related to Ramlibacter henchirensis $TMB834^T$ and Ramlibacter tataouinensis$TTB310^T$ (96.4% and 96.3% similarity, respectively). The G+C content of the genomic DNA was 68.1%. The major menaquinone was Q-8. The major fatty acids were $C_{16:0}$, summed feature 4 (comprising $C_{16:1}$ ${\omega}7c$ and/or iso-$C_{15:0}$ 2OH), and $C_{17:0}$ cyclo. Genomic and chemotaxonomic data supported the affiliation of strain BXN5-$27^T$ to the genus Ramlibacter. However, physiological and biochemical tests differentiated it phenotypically from the other established species of Ramlibacter. Therefore, the isolate represents a novel species, for which the name Ramlibacter ginsenosidimutans sp. nov. is proposed, with the type strain being BXN5-$27^T$ (=DSM $23480^T$ = LMG $24525^T$ = KCTC $22276^T$).