DOI QR코드

DOI QR Code

Amazonocrinis thailandica sp. nov. (Nostocales, Cyanobacteria), a novel species of the previously monotypic Amazonocrinis genus from Thailand

  • Tawong, Wittaya (Department of Agricultural Sciences, Faculty of Agriculture Natural Resources and Environment, Naresuan University) ;
  • Pongcharoen, Pongsanat (Department of Agricultural Sciences, Faculty of Agriculture Natural Resources and Environment, Naresuan University) ;
  • Pongpadung, Piyawat (Department of Agricultural Sciences, Faculty of Agriculture Natural Resources and Environment, Naresuan University) ;
  • Ponza, Supat (Department of Agricultural Sciences, Faculty of Agriculture Natural Resources and Environment, Naresuan University) ;
  • Saijuntha, Weerachai (Walai Rukhavej Botanical Research Institute, Mahasarakham University)
  • Received : 2021.11.08
  • Accepted : 2022.03.10
  • Published : 2022.03.15

Abstract

Cyanobacteria are distributed worldwide, and many new cyanobacterial species are discovered in tropical region. The Nostoc-like genus Amazonocrinis has been separated from the genus Nostoc based on polyphasic methods. However, species diversity within this genus remains poorly understood systematically because only one species (Amazonocrinis nigriterrae) has been described. In this study, two novel strains (NUACC02 and NUACC03) were isolated from moist rice field soil in Thailand. These two strains were characterized using a polyphasic approach, based on morphology, 16S rRNA phylogenetic analysis, internal transcribed spacer secondary structure and ecology. Phylogenetic analyses based on 16S rRNA gene sequences confirmed that the two novel strains formed a monophyletic clade related to the genus Amazonocrinis and were distant from the type species A. nigriterrae. The 16S rRNA gene sequence similarity (<98.1%) between novel strains and all other closely related taxa including the Amazonocrinis members exceeded the cutoff for species delimitation in bacteriology, reinforcing the presence of a new Amazonocrinis species. Furthermore, the novel strains possessed unique phenotypic characteristics such as the presence of the sheath, necridia-like cells, larger cell dimension and akinete cell arrangement in long-chains and the singularity of D1-D1', Box-B, V2, and V3 secondary structures that distinguished them from other Amazonocrinis members. Considering all the results, we described our two strains as Amazonocrinis thailandica sp. nov. in accordance with the International Code of Nomenclature for Algae, Fungi and Plants.

Keywords

Acknowledgement

This study was supported by Naresuan University, Thailand (R2565B004).

References

  1. Alvarenga, D. O., Andreote, A. P. D., Branco, L. H. Z., Delbaje, E., Cruz, R. B., de Mello Varani, A. & Fiore, M. F. 2021. Amazonocrinis nigriterrae gen. nov., sp. nov., Atlanticothrix silvestris gen. nov., sp. nov. and Dendronalium phyllosphericum gen. nov., sp. nov., nostocacean cyanobacteria from Brazilian environments. Int. J. Syst. Evol. Microbiol. 71:004811.
  2. Andersen, R. A. 2005. Algal culturing techniques. Elsevier Academic Press, New York, 578 pp.
  3. Bagchi, S. N., Dubey, N. & Singh, P. 2017. Phylogenetically distant clade of Nostoc-like taxa with the description of Aliinostoc gen. nov. and Aliinostoc morphoplasticum sp. nov. Int. J. Syst. Evol. Microbiol. 67:3329-3338. https://doi.org/10.1099/ijsem.0.002112
  4. Bravakos, P., Kotoulas, G., Skaraki, K., Pantazidou, A. & Economou-Amilli, A. 2016. A polyphasic taxonomic approach in isolated strains of Cyanobacteria from thermal springs of Greece. Mol. Phylogenet. Evol. 98:147-160. https://doi.org/10.1016/j.ympev.2016.02.009
  5. Brocke, H. J., Piltz, B., Herz, N., Abed, R. M. M., Palinska, K. A., John, U., den Haan, J., de Beer, D. & Nugues, M. M. 2018. Nitrogen fixation and diversity of benthic cyanobacterial mats on coral reefs in Curacao. Coral Reefs 37:861-874. https://doi.org/10.1007/s00338-018-1713-y
  6. Brocke, H. J., Wenzhoefer, F., de Beer, D., Mueller, B., van Duyl, F. C. & Nugues, M. M. 2015. High dissolved organic carbon release by benthic cyanobacterial mats in a Caribbean reef ecosystem. Sci. Rep. 5:8852. https://doi.org/10.1038/srep08852
  7. Cai, F., Li, X., Geng, R., Peng, X. & Li, R. 2019a. Phylogenetically distant clade of Nostoc-like taxa with the description of Minunostoc gen. nov. and Minunostoc cylindricum sp. nov. Fottea 19:13-24. https://doi.org/10.5507/fot.2018.013
  8. Cai, F., Li, X., Yang, Y., Jia, N., Huo, D. & Li, R. 2019b. Compactonostoc shennongjiaensis gen. & sp. nov. (Nostocales, Cyanobacteria) from a wet rocky wall in China. Phycologia 58:200-210. https://doi.org/10.1080/00318884.2018.1541270
  9. Cai, F., Peng, X. & Li, R. 2020. Violetonostoc minutum gen. et sp. nov. (Nostocales, Cyanobacteria) from a rocky substrate in China. Algae 35:1-15. https://doi.org/10.4490/algae.2020.35.3.4
  10. Cai, F., Yu, G., Liu, Y., Sun, Y. & Li, R. 2021. Description of two new species of Nostoc from China based on the polypha sic approach. Fottea 21:259-271. https://doi.org/10.5507/fot.2021.011
  11. Caiola, M. G. & Pellegrini, S. 1979. Effects of various nitrogen sources on Nostoc punctiforme (Kutzing). Caryologia 32:485-498. https://doi.org/10.1080/00087114.1979.10796812
  12. Chatchawan, T., Komarek, J., Strunecky, O., Smarda, J. & Peerapornpisal, Y. 2012. Oxynema, a new genus separated from the genus Phormidium (Cyanophyta). Cryptogam. Algol. 33:41-59. https://doi.org/10.7872/crya.v33.iss1.2011.041
  13. Dvorak, P., Hasler, P., Casamatta, D. A. & Poulickova, A. 2021. Underestimated cyanobacterial diversity: trends and perspectives of research in tropical environments. Fottea 21:110-127. https://doi.org/10.5507/fot.2021.009
  14. Dvorak, P., Poulickova, A., Hasler, P., Belli, M., Casamatta, D. A. & Papini, A. 2015. Species concepts and speciation factors in cyanobacteria, with connection to the problems of diversity and classification. Biodivers. Conserv. 24:739-757. https://doi.org/10.1007/s10531-015-0888-6
  15. Fiore, M. F., Neilan, B. A., Copp, J. N., Rodrigues, J. L. M., Tsai, S. M., Lee, H. & Trevors, J. T. 2005. Characterization of nitrogen-fixing cyanobacteria in the Brazilian Amazon floodplain. Water Res. 39:5017-5026. https://doi.org/10.1016/j.watres.2005.10.002
  16. Fiore, M. F., Sant'Anna, C. L., Azevedo, M. T. P., Komarek, J., Kastovsky, J., Sulek, J. & Lorenzi, A. S. 2007. The cyanobacterial genus Brasilonema gen. nov. a molecular and phenotypic evaluation. J. Phycol. 43:789-798. https://doi.org/10.1111/j.1529-8817.2007.00376.x
  17. Genuario, D. B., Andreote, A. P. D., Vaz, M. G. M. V. & Fiore, M. F. 2007. Heterocyte-forming cyanobacteria from Brazilian saline-alkaline lakes. Mol. Phylogenet. Evol. 109:105-112. https://doi.org/10.1016/j.ympev.2016.12.032
  18. Genuario, D. B., Vaz, M. G. M. V., Hentschke, G. S., Sant'Anna, C. L. & Fiore, M. F. 2015. Halotia gen. nov., a phylogenetically and physiologically coherent cyanobacterial genus isolated from marine coastal environments. Int. J. Syst. Evol. Microbiol. 65:663-675. https://doi.org/10.1099/ijs.0.070078-0
  19. Hasler, P., Dvorak, P., Johansen, J. R., Kitner, M., Ondrej, V. & Poulickova, A. 2012. Morphological and molecular study of epipelic filamentous genera Phormidium, Microcoleus and Geitlerinema (Oscillatoriales, Cyanophyta/Cyanobacteria). Fottea 12:341-356. https://doi.org/10.5507/fot.2012.024
  20. Hentschke, G. S., Johansen, J. R., Pietrasiak, N., Rigonato, J., Fiore, M. F. & Sant'Anna, C. L. 2017. Komarekiella atlantica gen. et sp. nov. (Nostocaceae, Cyanobacteria): a new subaerial taxon from the Atlantic Rainforest and Kauai, Hawaii. Fottea 17:178-190. https://doi.org/10.5507/fot.2017.002
  21. Hirose, Y., Chihong, S., Watanabe, M., Yonekawa, C., Murata, K., Ikeuchi, M. & Eki, T. 2019. Diverse chromatic acclimation processes regulating phycoerythrocyanin and rod-shaped phycobilisome in cyanobacteria. Mol. Plant 12:715-725. https://doi.org/10.1016/j.molp.2019.02.010
  22. Hrouzek, P., Lukesova, A., Mares, J. & Ventura, S. 2013. Description of the cyanobacterial genus Desmonostoc gen. nov. including D. muscorum comb. nov. as a distinct, phylogenetically coherent taxon related to the genus Nostoc. Fottea 13:201-213. https://doi.org/10.5507/fot.2013.016
  23. Hrouzek, P., Ventura, S., Lukesova, A., Mugnai, M. A., Turicchia, S. & Komarek, J. 2005. Diversity of soil Nostoc strains: phylogenetic and phenotypic variability. Algol. Stud. 117:251-264. https://doi.org/10.1127/1864-1318/2005/0117-0251
  24. Iteman, I., Rippka, R., de Marsac, N. T. & Herdman, M. 2000. Comparison of conserved structural and regulatory domains within divergent 16S rRNA-23S rRNA spacer sequences of cyanobacteria. Microbiology 146:1275-1286. https://doi.org/10.1099/00221287-146-6-1275
  25. Johansen, J. R. & Casamatta, D. A. 2005. Recognizing cyanobacterial diversity through adoption of a new species paradigm. Algol. Stud. 117:71-93. https://doi.org/10.1127/1864-1318/2005/0117-0071
  26. Johansen, J. R., Gonzalez-Resendiz, L., Escobar-Sanchez, V., Segal-Kischinevzky, C., Martinez-Yerena, J., HernandezSanchez, J., Hernandez-Perez, G. & Leon-Tejera, H. 2021. When will taxonomic saturation be achieved? A case study in Nunduva and Kyrtuthrix (Rivulariaceae, Cyanobacteria). J. Phycol. 57:1699-1720. https://doi.org/10.1111/jpy.13201
  27. Johansen, J. R., Kovacik, L., Casamatta, D. A., Fucikova, K. & Kastovsky, J. 2011. Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia 92:283-302. https://doi.org/10.1127/0029-5035/2011/0092-0283
  28. Johansen, J. R., Mares, J., Pietrasiak, N., Bohunicka, M., Zima, J. Jr., Stenclova, L. & Hauer, T. 2017. Highly divergent 16S rRNA sequences in ribosomal operons of Scytonema hyalinum (Cyanobacteria). PLoS ONE 12:e0186393. https://doi.org/10.1371/journal.pone.0186393
  29. Kastovsky, J., Berrendero Gomez, E., Hladil, J. & Johansen, J. R. 2014. Cyanocohniella calida gen. et sp. nov. (Cyanobacteria: Aphanizomenonaceae) a new cyanobacterium from the thermal springs from Karlovy Vary, Czech Republic. Phytotaxa 181:279-292. https://doi.org/10.11646/phytotaxa.181.5.3
  30. Katoh, K. & Standley, D. M. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30:772-780. https://doi.org/10.1093/molbev/mst010
  31. Kim, M., Oh, H.-S., Park, S.-C. & Chun, J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64:346-351. https://doi.org/10.1099/ijs.0.059774-0
  32. Komarek, J. 2016. A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. Eur. J. Phycol. 51:346-353. https://doi.org/10.1080/09670262.2016.1163738
  33. Komarek, J. & Johansen, J. R. 2015. Filamentous cyanobacteria. In Wehr, J. D., Sheath, R. G. & Kociolek, J. P. (Eds.) Freshwater Algae of North America. Elsevier, London, pp. 135-235.
  34. Komarek, J., Kastovsky, J., Mares, J. & Johansen, J. R. 2014. Taxonomic classification of cyanoprokaryotes (cyanobacterial genera) 2014, using a polyphasic approach. Preslia 86:295-335.
  35. Komarek, J. & Mares, J. 2012. An update to modern taxonomy (2011) of freshwater planktic heterocytous cyanobacteria. Hydrobiologia 698:327-351. https://doi.org/10.1007/s10750-012-1027-y
  36. Komarek, J., Zapomelova, E. & Hindak, F. 2010. Cronbergia gen. nov., a new cyanobacteria genus (Cyanophyta) with a special strategy of heterocyte formation. Cryptogam. Algol. 31:321-341.
  37. Kozlikova-Zapomelova, E., Chatchawan, T., Kastovsky, J. & Komarek, J. 2016. Phylogenetic and taxonomic position of the genus Wollea with the description of Wollea salina sp. nov. (Cyanobacteria, Nostocales). Fottea 16:43-55. https://doi.org/10.5507/fot.2015.026
  38. Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549. https://doi.org/10.1093/molbev/msy096
  39. Lee, N. -J., Bang, S. -D., Kim, T., Ki, J. -S. & Lee, O. -K. 2021. Pseudoaliinostoc sejongens gen. & sp. nov. (Nostocales, Cyanobacteria) from floodplain soil of the Geum River in Korea based on polyphasic approach. Phytotaxa 479:55-70. https://doi.org/10.11646/phytotaxa.479.1.4
  40. Lukesova, A., Johansen, J. R., Martin, M. P. & Casamatta, D. A. 2009. Aulosira bohemensis sp. nov.: further phylogenetic uncertainty at the base of the Nostocales (Cyanobacteria). Phycologia 48:118-129. https://doi.org/10.2216/08-56.1
  41. Mai, T., Johansen, J. R., Pietrasiak, N., Bohunicka, M. & Martin, M. P. 2018. Revision of the Synechococcales (Cyanobacteria) through recognition of four families including Oculatellaceae fam. nov. and Trichocoleaceae fam. nov. and six new genera containing 14 species. Phytotaxa 365:1-59. https://doi.org/10.11646/phytotaxa.365.1.1
  42. Markham, N. R. & Zuker, M. 2008. UNAFold: software for nucleic acid folding and hybridization. In Keith, J. (Ed.) Data, Sequence Analysis, and Evolution, Bioinformatics: Vol. 2, Chapter 1. Humana Press Inc., Totowa, NJ, pp. 3-31.
  43. McGregor, G. B. & Sendall, B. C. 2021. True branching and phenotypic plasticity in the planktonic cyanobacterium Dolichospermum brachiatum sp. nov. (Nostocales, Aphanizomenonaceae), from south eastern Australia. Phytotaxa 491:93-114. https://doi.org/10.11646/phytotaxa.491.2.1
  44. Neilan, B. A., Jacobs, D., Therese, D. D., Blackall, L. L., Hawkins, P. R., Cox, P. T. & Goodman, A. E. 1997. rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int. J. Syst. Evol. Microbiol. 47:693-697.
  45. Nylander, J. A. A. 2004. MrModeltest v2. Program distributed by author. Evolutionary Biology Centre, Uppsala University, Uppsala.
  46. Osorio-Santos, K., Pietrasiak, N., Bohunicka, M., Miscoe, L. H., Kovacik, L., Martin, M. P. & Johansen, J. R. 2014. Seven new species of Oculatella (Pseudanabaenales, Cyanobacteria): taxonomically recognizing cryptic diversification. Eur. J. Phycol. 49:450-470. https://doi.org/10.1080/09670262.2014.976843
  47. Pagels, F., Guedes, A. C., Amaro, H. M., Kijjoa, A. & Vasconcelos, V. 2019. Phycobiliproteins from cyanobacteria: chemistry and biotechnological applications. Biotechnol. Adv. 37:422-443. https://doi.org/10.1016/j.biotechadv.2019.02.010
  48. Papaefthimiou, D., Hrouzek, P., Mugnai, M. A., Lukesova, A., Turicchia, S., Rasmussen, U. & Ventura, S. 2008. Differential patterns of evolution and distribution of the symbiotic behaviour in nostocacean cyanobacteria. Int. J. Syst. Evol. Microbiol. 58:553-564. https://doi.org/10.1099/ijs.0.65312-0
  49. Piccin-Santos, V., Brandao, M. M. & Bittencourt-Oliveira, M. D. C. 2014. Phylogenetic study of Geitlerinema and Microcystis (Cyanobacteria) using PC-IGS and 16S-23S ITS as markers: investigation of horizontal gene transfer. J. Phycol. 50:736-743. https://doi.org/10.1111/jpy.12204
  50. Pietrasiak, N., Reeve, S., Osorio-Santos, K., Lipson, D. A. & Johansen, J. R. 2021. Trichotorquatus gen. nov.: a new genus of soil cyanobacteria discovered from American drylands. J. Phycol. 57:886-902. https://doi.org/10.1111/jpy.13147
  51. Rajaniemi, P., Hrouzek, P., Kastovska, K., Willame, R., Rantala, A., Hoffmann, L., Komarek, J. & Sivonen, K. 2005a. Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). Int. J. Syst. Evol. Microbiol. 55:11-26. https://doi.org/10.1099/ijs.0.63276-0
  52. Rajaniemi, P., Komarek, J., Willame, R., Hrouzek, P., Kastovska, K., Hoffmann, L. & Sivonen, K. 2005b. Taxonomic consequences from the combined molecular and phenotype evaluation of selected Anabaena and Aphanizomenon strains. Algol. Stud. 117:371-391. https://doi.org/10.1127/1864-1318/2005/0117-0371
  53. Rastogi, R. P. & Incharoensakdi, A. 2014. Characterization of UV-screening compounds, mycosporine-like amino acids, and scytonemin in the cyanobacterium Lyngbya sp. CU2555. FEMS Microbiol. Ecol. 87:244-256. https://doi.org/10.1111/1574-6941.12220
  54. Rehakova, K., Johansen, J. R., Casamatta, D. A., Xuesong, L. & Vincent, J. 2007. Morphological and molecular characterization of selected desert soil cyanobacteria: three species new to science including Mojavia pulchra gen. et sp. nov. Phycologia 46:481-502. https://doi.org/10.2216/06-92.1
  55. Ronquist, F., Teslenko, M. van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A. & Huelsenbeck, J. P. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61:539-542. https://doi.org/10.1093/sysbio/sys029
  56. Roshan, S. K., Farhangi, M., Emtyazjoo, M. & Rabbani, M. 2015. Effects of solar radiation on pigmentation and induction of a mycosporine-like amino acid in two cyanobacteria, Anabaena sp. and Nostoc sp. ISC26. Eur. J. Phycol. 50:173-181. https://doi.org/10.1080/09670262.2015.1021384
  57. Saraf, A. G., Dawda, H. G. & Singh, P. 2019. Desikacharya gen. nov., a phylogenetically distinct genus of cyanobacteria along with the description of two new species, Desikacharya nostocoides sp. nov. and Desikacharya soli sp. nov., and reclassification of Nostoc thermotolerans to Desikacharya thermotolerans comb. nov. Int. J. Syst. Evol. Microbiol. 69:307-315. https://doi.org/10.1099/ijsem.0.003093
  58. Sciuto, K., Moschin, E. & Moro, I. 2017. Cryptic cyanobacterial diversity in the giant cave (Trieste, Italy): the new genus Timaviella (Leptolyngbyaceae). Cryptogam. Algol. 38:285-323. https://doi.org/10.7872/crya/v38.iss4.2017.285
  59. Shalygin, S., Shalygina, R., Johansen, J. R., Pietrasiak, N., Berrendero Gomez, E., Bohunicka, M., Mares, J. & Sheil, C. A. 2017. Cyanomargarita gen. nov. (Nostocales, Cyanobacteria): convergent evolution resulting in a cryptic genus. J. Phycol. 53:762-777. https://doi.org/10.1111/jpy.12542
  60. Soares, F., Ramos, V., Trovao, J., Cardoso, S. M., Tiago, I. & Portugal, A. 2020. Parakomarekiella sesnandensis gen. et sp. nov. (Nostocales, Cyanobacteria) isolated from the Old Cathedral of Coimbra, Portugal (UNESCO World Heritage Site). Eur. J. Phycol. 56:301-315.
  61. Stackebrandt, E. & Ebers, J. 2006. Taxonomic parameters revisited: tarnished gold standards. Microbiol. Today 33:152-155.
  62. Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312-1313. https://doi.org/10.1093/bioinformatics/btu033
  63. Strunecky, O., Raabova, L., Bernardova, A., Ivanova, A. P., Semanova, A., Crossley, J. & Kaftan, D. 2020. Diversity of cyanobacteria at the Alaska North Slope with description of two new genera: Gibliniella and Shackletoniella. FEMS Microbiol. Ecol. 96:fiz189. https://doi.org/10.1093/femsec/fiz189
  64. Suradkar, A., Villanueva, C., Gaysina, L. A., Casamatta, D. A., Saraf, A., Dighe, G., Mergu, R. & Singh, P. 2017. Nostoc thermotolerans sp. nov., a soil-dwelling species of Nostoc (Cyanobacteria). Int. J. Syst. Evol. Microbiol. 67:1296-1305. https://doi.org/10.1099/ijsem.0.001800
  65. Szubert, K., Torunska-Sitarz, A., Ston-Egiert, J., Wiglusz, M. & Mazur-Marzec, H. 2021. Comparative characterization of two cyanobacteria strains of the order Spirulinales isolated from the Baltic Sea: polyphasic approach in practice. Algal Res. 55:102170. https://doi.org/10.1016/j.algal.2020.102170
  66. Tantipisanuh, N., Savini, T., Cutter, P. & Gale, G. A. 2016. Biodiversity gap analysis of the protected area system of the Indo-Burma Hotspot and priorities for increasing biodiversity representation. Biol. Conserv. 195:203-213. https://doi.org/10.1016/j.biocon.2015.12.043
  67. Tashyreva, D. & Elster, J. 2015. Effect of nitrogen starvation on desiccation tolerance of Arctic Microcoleus strains (cyanobacteria). Front. Microbiol. 6:278. https://doi.org/10.3389/fmicb.2015.00278
  68. Tawong, W., Pongcharoen, P. & Nishimura, T. 2022. Geosmin-producing Scytonema foetidum sp. nov. (Scytonemataceae, Cyanobacteria): morphology and molecular phylogeny. Fottea 22:78-92. https://doi.org/10.5507/fot.2021.017
  69. Tawong, W., Pongcharoen, P., Pongpadung, P. & Ponza, S. 2019. Neowollea manoromense gen. & sp. nov. (Nostocales, Cyanobacteria), a novel geosmin producer isolated from Thailand. Phytotaxa 421:1-17. https://doi.org/10.11646/phytotaxa.421.1.1
  70. Whitton, B. A. & Potts, M. 2013. Introduction to the cyanobacteria. In Whitton, B. A. (Ed.) Ecology of Cyanobacteria II: Their Diversity in Space and Time. Springer, Dordrecht, pp. 1-13.
  71. Yarza, P., Yilmaz, P., Pruesse, E., Glockner, F. O., Ludwig, W., Schleifer, K.-H., Whitman, W. B., Euzeby, J., Amann, R. & Rossello-Mora, R. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12:635-645. https://doi.org/10.1038/nrmicro3330