• Title/Summary/Keyword: polyolefins

Search Result 22, Processing Time 0.03 seconds

The Role of Microporous Separator in Lithium Ion Secondary Battery (리튬이온 이차전지에서의 미세다공성 격리막의 역할)

  • 이영무;오부근
    • Membrane Journal
    • /
    • v.7 no.3
    • /
    • pp.123-130
    • /
    • 1997
  • The characteristics of microporous separator for lithium ion secondary battery was introduced. Microporous separator is a key component of a lithium ion secondary battery because its basic properties were related with the performance and safety of the battery. Up to now, stretched microporous polyolefins such as polyethylene(PE) separator were mainly applied. It is still required to enhance wettability and shut-down property. For this purpose, the application of fluorovinylic polymers and surface modification of conventional polyolefinic microporous membrans we being continuously tried.

  • PDF

Synthesis of Terpolymers and Dependence of Their Characteristics on Types and Content of High α-olefin

  • Kim, Jung Soo;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.263-269
    • /
    • 2020
  • Novel flexible terpolymers with a reactive moiety were synthesized by coordination polymerization with a metallocene catalyst and a cocatalyst system. C2-symmetric rac-Et(Ind)2ZrCl2 and tri-iso-butylaluminum/dimethylanilinium tetrakis (pentafluorophenyl) borate were employed as the catalyst and cocatalyst, respectively. We synthesized reactive terpolymers consisting of ethylene, a high α-olefin content (1-hexene, 1-octene, 1-decene, and 1-dodecene), and divinylbenzene. The structure and composition of the terpolymers were characterized by 1H-nuclear magnetic resonance analysis. The catalytic activity, polymer yield, molecular weight, and molecular weight distribution were measured as functions of the chain length and high content of α-olefins. Furthermore, the thermal properties and crystallinity of the terpolymers were determined by differential scanning calorimetry and wide-angle X-ray scattering.

Study of Water Diffusion in PE-SiO2 Nanocomposites by Dielectric Spectroscopy

  • Couderc, Hugues;David, Eric;Frechette, Michel
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.6
    • /
    • pp.291-296
    • /
    • 2014
  • In recent years, researchers have extensively investigated polymers filled with inorganic nanoparticles because these materials present improved physical properties relative to those of conventional unfilled polymers. Oxides, silica in particular, are the most commonly used inorganic particles because they possess good properties and can be fabricated at a low cost. However, oxides are hydrophilic in nature, and this leads to the presence of water at the interface between the nanoparticles and the polymer matrix. Due to the predominance of particle-matrix interfaces in nanocomposites, the presence of water at the interlayer region can be problematic. Moreover, the hydrophobic nature of most polymers, particularly for polyolefins such as polyethylene, may make it difficult to remove this interfacial water. In this paper, as-received and moistened samples of agglomerated nanosilica/polyethylene were dried using an isothermal treatment at $60^{\circ}C$, and the efficacy of this treatment was studied using dielectric spectroscopy. The Maxwell-Wagner-Sillars relaxation peaks were observed to shift to lower frequencies by three decades, and this was linked to a modification of the water content, due to drying, at the interfaces between silica and polyethylene and at the interfaces within the nanosilica agglomerates. The evolution of the extracted retardation time is explained by the nanosilica hydrophily and the free volume introduced by the nanoparticles.

Comprehensive Wear Study on Powder Metallurgical Steels for the Plastics Industry, Especially Injection Moulding Machines

  • Gornik, Christian;Perko, Jochen
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.399-400
    • /
    • 2006
  • M390 microclean(R) of $B{\ddot{o}}hler$ Edelstahl is a powder metallurgical plastic mould steel with a high level of corrosion and wear resistance and therefore often used in the plastics processing industry. But as a consequence of rapidly advancing developments in the plastics processing industry the required level of wear resistance of tool steels in this field is constantly rising. For that reason a new PM tool steel with higher hardness values and an increased amount of primary carbides has been developed to improve the resistance against abrasive and adhesive wear. The wear resistance of both steels against adhesive situations for components of the plastification unit of injection moulding machines has been tested with a novel method. In case of processing polyolefins with an injection moulding machine it was found that there is adhesive wear between the check-ring and the flights of the screw tip of the non-return valve under certain circumstances. The temperature in that region was measured with an infrared temperature sensor. The existence of significant peaks of that signal was used as an indicator for an adhesive wear situation.

  • PDF

Metallocene Catalysts on Carbon-based Nano-materials

  • Choi, Baek-Hap;Lee, Jun-O;Lee, Seung-Jun;Ko, Jae-Hyeon;Lee, Kyoung-Seok;Oh, Jung-Hoon;Kim, Yong-Hyun;Choi, In-Sung S.;Park, Sung-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.556-556
    • /
    • 2012
  • Transition metal-based organometallic complexes have shown great talents as a catalyst in various reactions. Designing organic molecules and coordinating them to such active centers have been a promising route to control the catalytic natures. Metallocene, which has transition metal atoms sandwiched by aromatic rings, is one of the representative systems for organometallic catalysts. Group 4-based metallocene catalysts have been most commonly used for the production of polyolefins, which have great world-wide markets in the real life. Graphenes and carbon nanotubes (CNTs) were composed of extended $sp^2$ carbon networks, showing high electron mobility as well as have extremely large steric bulkiness relative to metal centers. We were inspired by these characteristics of such carbon-based nano-materials and assumed that they could intimately interact with active centers of metallocene catalysts. We examined this hypothesis and, recently, reported that CNTs dramatically changed catalytic natures of group 4-based catalysts when they formed hybrid systems with such catalysts. In conclusion, we produced hybrid materials composed of group-4 based metallocenes, $Cp_2ZrCl_2$ and $Cp_2TiCl_2$, and carbon-based nano-materials such as RGO and MWCNT. Such hybrids were generated via simple adsorption between Cp rings of metallocenes and graphitic surfaces of graphene/CNT. The hybrids showed interesting catalytic behaviors for ethylene polymerizations. Resulting PEs had significantly increased Mw relative to those produced from free metallocene-based catalytic systems, which are not adsorbed on carbon-based nano-materials. UHMWPEs with extremely high Mw were obtained at low Tp.

  • PDF

Effect of Phenolic Antioxidants System on Yellowing of Amorphous Poly-α-olefin (페놀계 산화방지제에 의한 비결정성 올레핀 수지의 황변 거동)

  • Kim, Si-Yong;Kim, Ho-Gyum;Park, Sang-Cheol;Min, Kyung-Eun
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.156-161
    • /
    • 2013
  • Phenolic antioxidants are effective stabilizers that provide excellent long-term heat stability by preventing thermo-oxidative degradation during processing and service life. However, under a selected set of circumstances, certain types of phenolics have been susceptible to discoloration due to prolonged storage in an environment containing oxides of nitrogen. It is investigated that the effect of addition of secondary antioxidant and chemical structure of primary antioxidant on discoloration of amorphous poly-${\alpha}$-olefin (APAO), which is especially prone to be decomposed in high processing temperature. From the result, it is concluded that a higher level of steric hindrance of phenolic antioxidant provided by long alkyl chain allows a more enhanced synergic effect with secondary antioxidant.

Modification and Properties of Polyolefin with Maleic Anhydride as a Functional Monomer (관능성 단량체로서 Maleic Anhydride를 이용한 Polyolefin의 개질 및 물성)

  • Mo, Jong-Hun;Lee, Jae-Seok;Choi, Im-Cheol;Lee, Won-Kee;Park, Sang-Bo;Min, Seong-Kee;Park, Chan-Young
    • Elastomers and Composites
    • /
    • v.47 no.2
    • /
    • pp.162-167
    • /
    • 2012
  • Surface modification of macromolecules renders a progressive and favorable method to enhance the properties of polymeric materials and improves conductivity, wettability, stability, adhesion, antibacterial properties, etc. of polymeric surfaces without deterioration of the polymer bulk properties. Polyolefins such as polyethylene and polypropylene were grafted with maleic anhydride(MAH) as a functional monomer in solution. Evidence for grafting was shown with FTIR measurement. The grafting ratio was determined from chemical titration. The higher MAH loading, the lower contact angle(${\theta}$) was obtained. With the increasing content of MAH, melting temperature($T_m$) of maleic anhydride grafted polymer decreased while decomposition temperature($T_d$) of maleic anhydride grafted polymer increased.

A Study on the Coordination Polymerization Using C2-Symmetric Dichloro[rac-ethylenebisindenyl] zirconium(IV)/Methylaluminoxane System (C2-Symmetric Dichloro[rac-ethylenebisindenyl] zirconium(IV)/Methylaluminoxane 시스템을 이용한 배위 중합에 관한 연구)

  • Yang, Dong Jin;Kim, Hyun Ki;Park, No-Hyung;Lee, Jun Chul;Kim, Dong Hyun
    • Elastomers and Composites
    • /
    • v.48 no.1
    • /
    • pp.2-9
    • /
    • 2013
  • We synthesized polyethylene, poly(ethylene-co-1-decene), poly(ethylene-co-p-methylstyrene), and poly(ethylene-ter-1-decene-ter-p-methystyrene) using a rac-$Et(Ind)_2ZrCl_2$ metallocene catalyst and a methylaluminoxane cocatalyst system. The materials were characterized using nuclear magnetic spectroscopy and fourier transform infrared spectroscopy. To identify suitable reaction conditions for terpolymerization, we studied the effects of catalyst content, cocatalyst/catalyst molar ratio, polymerization time, and polymerization temperature. As the catalyst content increased, the catalytic activity and the molecular weight of the terpolymers increased. The catalytic activity sharply increased but little change was observed after a polymerization time of 30 min. The increase in the cocatalyst/catalyst molar ratio resulted in a decrease in the molecular weight of the terpolymers and an increase in the catalytic activity to some degree. The catalytic activity increased with increasing polymerization temperature, while the molecular weight of the terpolymers decreased.

Morphological Properties of Binary Blends of Polyolefins Synthesized by Metallocene and Ziegler-Natta Catalysts (Ziegler-Natta와 메탈로센 촉매로 합성된 폴리올레핀 2원 블렌드의 상 형태학)

  • Kwag, Hanjin;Kim, Hak Lim;Choe, Soonja
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.944-948
    • /
    • 1999
  • The morphological properties of four binary blends of polyethylene synthesized by metallocene catalyst(MCPE) and four polyolefins prepared by Ziegler-Natta catalyst have been investigated to interpret the effect of micro-molecular structure on the phase morphology and interfacial behavior; four binary blend systems studied are high density polyethylene(HDPE)-metallocene polyethylene (MCPE), polypropylene(PP)-MCPE, poly(propylene-co-ethylene) (CoPP)-MCPE, and poly(propylene-co-ethylene-co-1-butylene) (TerPP)-MCPE, and they are all phase separated. The HDPE-MCPE blend shows evenly growing homogeneous HDPE domain on the continuous MCPE phase, on the other hand, the rest of three blends show complex heterogeneous phase behavior. The PP-MCPE blend shows that PP and MCPE and completely phase separated and phase inversion takes place at 50% MCPE. The CoPP-MCPE and TerPP-MCPE show enhanced interface due to the same micro-molecular structure of ethylene, and phase inversion takes place at 40% MCPE. In particular, TerPP-MCPE blend shows improved phase morphology between interfaces, and this may be arisen from the comonomer contents in TerPP, which are 1-butene and ethylene having the same chemical structure as that of MCPE. The enhancement of the phase morphology in the TerPP-MCPE blend is correlated with the mechanical and morphological properties. Thus, although the four blend systems are phase separated, the phase morphology suggests that the order of interfacial adhesion strength be HDPE-MCPE > TerPP-MCPE > CoPP-MCPE > PP-MCPE and that micro-molecular structure between constituents be one of major factors giving enhanced interfacial adhesion.

  • PDF

Synthesis of Low-Priced Catalyst from Coal Fly Ash for Pyrolysis of Waste Low Density Polyethylene (석탄비산재(石炭飛散災)로부터 저밀도(低密度) 폴리에틸렌 폐기물(廢棄物) 열분해용(熱分解用) 저가(低價) 촉매(觸媒) 합성(合成))

  • Jeong, Byung-Hwan;Na, Jeong-Geol;Kim, Sang-Guk;Mo, Se-Young;Chung, Soo-Hyun
    • Resources Recycling
    • /
    • v.16 no.2 s.76
    • /
    • pp.48-55
    • /
    • 2007
  • A low-priced catalyst for pyrolysis of LDPE has been synthesized. Fly ash, which is waste material generated from coal-fired power plants was used as silica and alumna sources for solid acid catalyst. Amorphous silica-alumina catalysts (FSAs) were pre-pared by dissolution of silica and alumina from fly ash, followed by co-precipitation of the dissoluted ions. A series of LDPE pyrolysis were carried out in a thermogravimetric analyzer to investigate the effects of synthesis conditions such as NaOH/fly ash weight ratio and activation time one catalytic performance of FSAs. The physical properties of FSAs were examined and related to their catalytic performances. FSA(1.2-8) synthesized with NaOH/fly ash weight ratio of 1.2 and the activation time of 8 hours showed the best catalytic performance. The catalytic performance of FSA(1.2-8) was comparable with that of commercial catalysts and it was concluded that the FSA could be a good candidate for catalytic use in the recycling of waste polyolefins.