DOI QR코드

DOI QR Code

A Study on the Coordination Polymerization Using C2-Symmetric Dichloro[rac-ethylenebisindenyl] zirconium(IV)/Methylaluminoxane System

C2-Symmetric Dichloro[rac-ethylenebisindenyl] zirconium(IV)/Methylaluminoxane 시스템을 이용한 배위 중합에 관한 연구

  • Received : 2012.11.26
  • Accepted : 2012.12.10
  • Published : 2013.03.31

Abstract

We synthesized polyethylene, poly(ethylene-co-1-decene), poly(ethylene-co-p-methylstyrene), and poly(ethylene-ter-1-decene-ter-p-methystyrene) using a rac-$Et(Ind)_2ZrCl_2$ metallocene catalyst and a methylaluminoxane cocatalyst system. The materials were characterized using nuclear magnetic spectroscopy and fourier transform infrared spectroscopy. To identify suitable reaction conditions for terpolymerization, we studied the effects of catalyst content, cocatalyst/catalyst molar ratio, polymerization time, and polymerization temperature. As the catalyst content increased, the catalytic activity and the molecular weight of the terpolymers increased. The catalytic activity sharply increased but little change was observed after a polymerization time of 30 min. The increase in the cocatalyst/catalyst molar ratio resulted in a decrease in the molecular weight of the terpolymers and an increase in the catalytic activity to some degree. The catalytic activity increased with increasing polymerization temperature, while the molecular weight of the terpolymers decreased.

rac-$Et(Ind)_2ZrCl_2$ 메탈로센 촉매와 메틸알루미늄옥산 공촉매를 이용하여 polyethylene, poly(ethylene-co-1-decene), poly(ethylene-co-p-methylstyrene) 및 poly(ethylene-ter-1-decene-ter-p-methystyrene)를 합성하였다. $^{13}C$ NMR과 $^1H$ NMR 및 FT-IR을 이용하여 삼원공중합체의 특성을 분석하였다. 삼원공중합의 최적조건을 확립하기 위해 동일한 중합조건을 유지한 채 촉매량, 공촉매/촉매 몰비, 중합 시간 및 중합 온도를 변경하여 실험하였다. 촉매량이 증가할수록 삼원공중합체의 촉매활성도 및 중량평균분자량은 증가하였으나, 중합시간이 30분을 초과하자 촉매활성도는 감소하였다. 공촉매/촉매 몰비를 증가시킨 결과 중량평균분자량은 감소하였고, 촉매활성도는 어느 정도 증가하였다. 촉매활성도는 중합온도가 증가함에 따라 상승하였으나 중량평균 분자량은 감소하였다.

Keywords

References

  1. Kaminsky. W, Sinn. H. Eds, "Transition metals and organometallics as catalysts for olefin polymerization", Springer-Verlag (1988)
  2. Shinjoon. P, Wen-Jun. W, Shiping. Z, "Continuous solution copolymerization of ethylene with propylene using a constrained geometry catalyst system", Macromol. Chem. Phys., 201, 2203 (2000) https://doi.org/10.1002/1521-3935(20001101)201:16<2203::AID-MACP2203>3.0.CO;2-V
  3. Wen-jun. W, Edward K, Shiping. Z, Archie. E, "Continuous solution copolymerization of ethylene and octene-1 with constrained geometry metallocene catalyst", J. Polym. Sci. Part A: Polym Chem., 37, 2949 (1999) https://doi.org/10.1002/(SICI)1099-0518(19990801)37:15<2949::AID-POLA28>3.0.CO;2-W
  4. Naofumi. N, Yukio. I, "Copolymerization of Ethylene and 1,7-Octadiene, 1,9-Decadiene with Zirconocene Catalysts" Macromol. Chem. Phys., 203, 2155 (2002) https://doi.org/10.1002/1521-3935(200211)203:15<2155::AID-MACP2155>3.0.CO;2-7
  5. Kim. I, "Copolymerization of ethylene and 5-vinyl- 2-norbornene by stereospecific metallocenes and epoxidation of the resulting copolymer", React. & Funct. Polym., 49, 197 (2001) https://doi.org/10.1016/S1381-5148(01)00074-8
  6. Kotohiro. N, Hiroya. F, Shohei. Katao, Michiya. Fujiki, Kim. H. J, Kim. D. H, Irfan. S, "Olefin Polymerization by Half-Titanocenes Containing $\eta^{2}$-Pyrazolato Ligands−MAO Catalyst Systems", Macromolecules, 44, 1986 (2011) https://doi.org/10.1021/ma200018z
  7. Forlini. F, Pinci. E, Tritto. I, Sacchi. M, Piemontesi. F, "$^{13}C$ NMR Study of the Effect of Coordinating Solvents on Zirconocene-Catalyzed Propene/1-Hexene Copolymerization", Macromol Chem Phys., 203, 645 (2002) https://doi.org/10.1002/1521-3935(20020301)203:4<645::AID-MACP645>3.0.CO;2-W
  8. Graef. S, Wahner. U. M, Van. R, Sanderson. A. J, "Copolymerization of propylene with higher $\alpha$-olefins in the presence of the syndiospecific catalyst i-Pr(Cp) (9-Flu)ZrCl2/MAO", J. Polym. Sci. Part A: Polym Chem., 40, 128 (2001)
  9. Kaminsky. W, Drogemuller, "Terpolymers of ethylene, propene and 1,5-hexadiene synthesized with zirconocene/methyl aluminoxane", Makromol. Chem. Rapid. Commun., 11, 89 (1990) https://doi.org/10.1002/marc.1990.030110208
  10. Koivunmaki. J, Seppala, "Observations on the Synergistic Effect of Adding 1-Butene to Systems Polymerized with $MgCl_{2}/TiCl_{4}$ and $Cp_{2}ZrCl_{2}$ Catalysts", J. V. Macromolecules, 27, 2008 (1994) https://doi.org/10.1021/ma00086a005
  11. Gerum. W, Hohne. G. W. H, Wilke. W, Arnold. M, Wegner. T, "Hydrogenated butadiene/ethene/l -olefin terpolymers as model substances for short-chain branched polyethylene", Macromol. Chem. Phys., 197, 1693 (1996)
  12. Villar. M. A. Ferreira. M. L, "Co- and terpolymerization of ethylene, propylene, and higher $\alpha$-olefins with high propylene contents using metallocene catalysts", J. Polym. Sci. Part A: Polym Chem., 39, 1136 (2001) https://doi.org/10.1002/1099-0518(20010401)39:7<1136::AID-POLA1090>3.0.CO;2-5
  13. Fernanda. F, Nunes E, Griselda. B. G, "$^{13}Carbon$ Nuclear Magnetic Resonance of Ethylene-Propylene-1-hexene Terpolymers", J. Polym. Sci. Part A: Polym Chem., 42, 2474 (2004) https://doi.org/10.1002/pola.20097
  14. Griselda. B. G, Fernanda. F, Nunes. E, Luciano. F. da. Silva, Maria. M de Camargo F, Raul. Q, "Ethylene-propylene-$\alpha$ -olefin terpolymers thermal and mechanical properties", J. Appl. Polym. Sci., 104, 3827 (2007) https://doi.org/10.1002/app.25972
  15. Chung. T. C, Lu. H. L, "Kinetic and Microstructure Studies of Poly (ethylene-co-p-methylstyrene) Copolymers Prepared by Metallocene Catalysts with Constrained Ligand Geometry", J. Polym. Sci. Part A: Polym Chem., 36, 1017 (1998) https://doi.org/10.1002/(SICI)1099-0518(19980430)36:6<1017::AID-POLA16>3.0.CO;2-8
  16. Lu. H. L, Hong. S, Chung. T. C, "Synthesis of New Polyolefin Elastomers, Poly(ethylene-ter-propylene-ter- p-methylstyrene) and Poly(ethylene-ter-1-octene-ter-p-methylstyrene), Using Metallocene Catalysts with Constrained Ligand Geometry", Macromolecules, 31, 2028 (1998) https://doi.org/10.1021/ma971320e
  17. Quijada. R, Narvaez. A, Rojas. R. F. Rabagliati. M. G. B, Galland. R. S, Mauler. R, Benavente. E, Perez. J. M, Perez. A. B, "Synthesis and characterization of copolymers of ethylene and 1-octadecene using the rac-Et(Ind)2ZrCl2/MAO catalyst system", Macromol. Chem. Phy., 200, 1306 (1999) https://doi.org/10.1002/(SICI)1521-3935(19990601)200:6<1306::AID-MACP1306>3.0.CO;2-4
  18. Chung T. C, Lu H. L, "Synthesis of poly(ethyleneco- p-methylstyrene) copolymers by metallocene catalysts with constrained ligand geometry", J. Polym Sci. Part A: Polym Chem., 35, 575 (1997) https://doi.org/10.1002/(SICI)1099-0518(199702)35:3<575::AID-POLA23>3.0.CO;2-K
  19. Lee. D. H, Jung. H. K, Kim. W. S, Min. K. E, Park. L. S, Seo. K. H, Kang. I. K, Noh. S. K, "Copolymerization of Ethylene and Cycloolefin with Metallocene Catalyst: I. Effect of Catalyst", Polymer(Korea), 24(4), 445 (2000)
  20. Huang. J, Rempel. G. L, "Ziegler-Natta catalysts for olefin polymerization: Mechanistic insights from metallocene systems", Prog. Polym. Sci., 20, 459 (1995) https://doi.org/10.1016/0079-6700(94)00039-5
  21. Lee. H. W, Park. Y. H, "Effect of Cocatalyst Type on the Characteristics of Olefin Polymerization with In-situ Supported Metallocene Catalysts", J. Korean Ind. Eng. Chem., 13(6), 570 (2002)