• Title/Summary/Keyword: polynomial root

Search Result 125, Processing Time 0.027 seconds

CUBIC FORMULA AND CUBIC CURVES

  • Woo, Sung Sik
    • Communications of the Korean Mathematical Society
    • /
    • v.28 no.2
    • /
    • pp.209-224
    • /
    • 2013
  • The problem of finding rational or integral points of an elliptic curve basically boils down to solving a cubic equation. We look closely at the cubic formula of Cardano to find a criterion for a cubic polynomial to have a rational or integral roots. Also we show that existence of a rational root of a cubic polynomial implies existence of a solution for certain Diophantine equation. As an application we find some integral solutions of some special type for $y^2=x^3+b$.

A NOTE OF THE MODIFIED BERNOULLI POLYNOMIALS AND IT'S THE LOCATION OF THE ROOTS

  • LEE, Hui Young
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.3_4
    • /
    • pp.291-300
    • /
    • 2020
  • This type of polynomial is a generating function that substitutes eλt for et in the denominator of the generating function for the Bernoulli polynomial, but polynomials by using this generating function has interesting properties involving the location of the roots. We define these generation functions and observe the properties of the generation functions.

TRACE EXPRESSION OF r-TH ROOT OVER FINITE FIELD

  • Cho, Gook Hwa;Koo, Namhun;Kwon, Soonhak
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.4
    • /
    • pp.1019-1030
    • /
    • 2020
  • Efficient computation of r-th root in 𝔽q has many applications in computational number theory and many other related areas. We present a new r-th root formula which generalizes Müller's result on square root, and which provides a possible improvement of the Cipolla-Lehmer type algorithms for general case. More precisely, for given r-th power c ∈ 𝔽q, we show that there exists α ∈ 𝔽qr such that $$Tr{\left(\begin{array}{cccc}{{\alpha}^{{\frac{({\sum}_{i=0}^{r-1}\;q^i)-r}{r^2}}}\atop{\text{ }}}\end{array}\right)}^r=c,$$ where $Tr({\alpha})={\alpha}+{\alpha}^q+{\alpha}^{q^2}+{\cdots}+{\alpha}^{q^{r-1}}$ and α is a root of certain irreducible polynomial of degree r over 𝔽q.

Efficient Optimization Method for Polynomial Selection (다항식 선택을 위한 효율적인 최적화 기법)

  • Kim, Suhri;Kwon, Heetaek;Lee, Yongseong;Chang, Nam Su;Yoon, Kisoon;Kim, Chang Han;Park, Young-Ho;Hong, Seokhie
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.3
    • /
    • pp.631-643
    • /
    • 2016
  • Currently, General Number Field Sieve(GNFS) is known as the most efficient way for factoring large numbers. CADO-NFS is an open software based on GNFS, that was used to factor RSA-704. Polynomial selection in CADO-NFS can be divided into two stages - polynomial selection, and optimization of selected polynomial. However, optimization of selected polynomial in CADO-NFS is an immense procedure which takes 90% of time in total polynomial selection. In this paper, we introduce modification of optimization stage in CADO-NFS. We implemented precomputation table and modified optimization algorithm to reduce redundant calculation for faster optimization. As a result, we select same polynomial as CADO-NFS, with approximately 40% decrease in time.

The Factor Domains that Result from Uppers to Prime Ideals in Polynomial Rings

  • Dobbs, David Earl
    • Kyungpook Mathematical Journal
    • /
    • v.50 no.1
    • /
    • pp.1-5
    • /
    • 2010
  • Let P be a prime ideal of a commutative unital ring R; X an indeterminate; D := R/P; L the quotient field of D; F an algebraic closure of L; ${\alpha}$ ${\in}$ L[X] a monic irreducible polynomial; ${\xi}$ any root of in F; and Q = ${\alpha}$>, the upper to P with respect to ${\alpha}$. Then R[X]/Q is R-algebra isomorphic to $D[{\xi}]$; and is R-isomorphic to an overring of D if and only if deg(${\alpha}$) = 1.

Local Modification of a Surface and Multiple Knot Insertion by Using the Chebyshev Polynormial (Chebyshev 다항식에 기초한 다수개의 절점 삽입과 곡면의 국부 수정)

  • 최성일;김태규;변문현
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.2
    • /
    • pp.103-112
    • /
    • 1998
  • In this paper insertion of numerous control points to be performed by using the Chebyshev polynomial root at the selection of knot vector. This method introduces a simple method of knot refinement and it is applied in a developed program. The Chebyshev roots exist densely in broth ends of the range and are proposed more effective knot refinement to modify a surface. Therefore, generated control points are relatively uniform in specified knot interval. In the surface generation, a local insertion of numerous control points are easily inserted by using the characteristic of Chebyshev polynomial roots at knot refinement. It is possible to create a complex surface with a single surface. The number of control point can be reduced by using the local insertion of control points in a required shape

  • PDF

3X Serial GF(2m) Multiplier on Polynomial Basis Finite Field (Polynomial basis 방식의 3배속 직렬 유한체 곱셈기)

  • 문상국
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.255-258
    • /
    • 2004
  • Efficient finite field operation in the elliptic curve (EC) public key cryptography algorithm, which attracts much of latest issues in the applications in information security, is very important. Traditional serial finite multipliers root from Mastrovito's serial multiplication architecture. In this paper, we adopt the polynomial basis and propose a new finite field multiplier, inducing numerical expressions which can be applied to exhibit 3 times as much performance as the Mastrovito's. We described the proposed multiplier with HDL to verify and evaluate as a proper hardware IP. HDL-implemented serial GF (Galois field) multiplier showed 3 times as fast speed as the traditional serial multiplier's adding only Partial-sum block in the hardware.

  • PDF

Verification of Graphite Isotope Ratio Method Combined With Polynomial Regression for the Estimation of Cumulative Plutonium Production in a Graphite-Moderated Reactor

  • Kim, Kyeongwon;Han, Jinseok;Lee, Hyun Chul;Jang, Junkyung;Lee, Deokjung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.4
    • /
    • pp.447-457
    • /
    • 2021
  • Graphite Isotope Ratio Method (GIRM) can be used to estimate plutonium production in a graphite-moderated reactor. This study presents verification results for the GIRM combined with a 3-D polynomial regression function to estimate cumulative plutonium production in a graphite-moderated reactor. Using the 3-D Monte-Carlo method, verification was done by comparing the cumulative plutonium production with the GIRM. The GIRM can estimate plutonium production for specific sampling points using a function that is based on an isotope ratio of impurity elements. In this study, the 10B/11B isotope ratio was chosen and calculated for sampling points. Then, 3-D polynomial regression was used to derive a function that represents a whole core cumulative plutonium production map. To verify the accuracy of the GIRM with polynomial regression, the reference value of plutonium production was calculated using a Monte-Carlo code, MCS, up to 4250 days of depletion. Moreover, the amount of plutonium produced in certain axial layers and fuel pins at 1250, 2250, and 3250 days of depletion was obtained and used for additional verification. As a result, the difference in the total cumulative plutonium production based on the MCS and GIRM results was found below 3.1% with regard to the root mean square (RMS) error.

A High-Speed LSF Transformation Algorithm for CELP Vocoders

  • Min, So-Yeon;Bae, Myung-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.1E
    • /
    • pp.20-24
    • /
    • 2001
  • We propose the computation reduction method of real root method that is mainly used in the CELP(Code Excited Linear Prediction) vocoder. The real root method is that if polynomial equations have the real roots, we are able to find those and transform them into LSF[1]. However, this method takes much time to compute, because the root searching is processed sequentially in frequency region. But, the important characteristic of LSF is that most of coefficients are occurred in specific frequency region. So, the searching frequency region is ordered by each coefficient's distribution. And coefficients are searched in ordered frequency region. Transformation time can be reduced by this method than the sequential searching method in frequency region. When we compare this proposed method with the conventional real root method, the experimental result is that the searching time was reduced about 46% in average.

  • PDF

THE MAXIMAL VALUE OF POLYNOMIALS WITH RESTRICTED COEFFICIENTS

  • Dubicks, Arturas;Jankauskas, Jonas
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.41-49
    • /
    • 2009
  • Let $\zeta$ be a fixed complex number. In this paper, we study the quantity $S(\zeta,\;n):=mas_{f{\in}{\Lambda}_n}\;|f(\zeta)|$, where ${\Lambda}_n$ is the set of all real polynomials of degree at most n-1 with coefficients in the interval [0, 1]. We first show how, in principle, for any given ${\zeta}\;{\in}\;{\mathbb{C}}$ and $n\;{\in}\;{\mathbb{N}}$, the quantity S($\zeta$, n) can be calculated. Then we compute the limit $lim_{n{\rightarrow}{\infty}}\;S(\zeta,\;n)/n$ for every ${\zeta}\;{\in}\;{\mathbb{C}}$ of modulus 1. It is equal to 1/$\pi$ if $\zeta$ is not a root of unity. If $\zeta\;=\;\exp(2{\pi}ik/d)$, where $d\;{\in}\;{\mathbb{N}}$ and k $\in$ [1, d-1] is an integer satisfying gcd(k, d) = 1, then the answer depends on the parity of d. More precisely, the limit is 1, 1/(d sin($\pi$/d)) and 1/(2d sin($\pi$/2d)) for d = 1, d even and d > 1 odd, respectively.