• Title/Summary/Keyword: polynomial rings

Search Result 160, Processing Time 0.021 seconds

ON ANNIHILATOR IDEALS OF A NEARRING OF SKEW POLYNOMIALS OVER A RING

  • Hashemi, Ebrahim
    • Journal of the Korean Mathematical Society
    • /
    • v.44 no.6
    • /
    • pp.1267-1279
    • /
    • 2007
  • For a ring endomorphism ${\alpha}$ and an ${\alpha}-derivation\;{\delta}$ of a ring R, we study relation between the set of annihilators in R and the set of annihilators in nearring $R[x;{\alpha},{\delta}]\;and\;R_0[[x;{\alpha}]]$. Also we extend results of Armendariz on the Baer and p.p. conditions in a polynomial ring to certain analogous annihilator conditions in a nearring of skew polynomials. These results are somewhat surprising since, in contrast to the skew polynomial ring and skew power series case, the nearring of skew polynomials and skew power series have substitution for its "multiplication" operation.

STRUCTURE OF IDEMPOTENTS IN POLYNOMIAL RINGS AND MATRIX RINGS

  • Juan Huang;Tai Keun Kwak;Yang Lee;Zhelin Piao
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1321-1334
    • /
    • 2023
  • An idempotent e of a ring R is called right (resp., left) semicentral if er = ere (resp., re = ere) for any r ∈ R, and an idempotent e of R∖{0, 1} will be called right (resp., left) quasicentral provided that for any r ∈ R, there exists an idempotent f = f(e, r) ∈ R∖{0, 1} such that er = erf (resp., re = fre). We show the whole shapes of idempotents and right (left) semicentral idempotents of upper triangular matrix rings and polynomial rings. We next prove that every nontrivial idempotent of the n by n full matrix ring over a principal ideal domain is right and left quasicentral and, applying this result, we can find many right (left) quasicentral idempotents but not right (left) semicentral.

ZERO DIVISOR GRAPHS OF SKEW GENERALIZED POWER SERIES RINGS

  • MOUSSAVI, AHMAD;PAYKAN, KAMAL
    • Communications of the Korean Mathematical Society
    • /
    • v.30 no.4
    • /
    • pp.363-377
    • /
    • 2015
  • Let R be a ring, (S,${\leq}$) a strictly ordered monoid and ${\omega}$ : S ${\rightarrow}$ End(R) a monoid homomorphism. The skew generalized power series ring R[[S,${\omega}$]] is a common generalization of (skew) polynomial rings, (skew) power series rings, (skew) Laurent polynomial rings, (skew) group rings, and Mal'cev-Neumann Laurent series rings. In this paper, we investigate the interplay between the ring-theoretical properties of R[[S,${\omega}$]] and the graph-theoretical properties of its zero-divisor graph ${\Gamma}$(R[[S,${\omega}$]]). Furthermore, we examine the preservation of diameter and girth of the zero-divisor graph under extension to skew generalized power series rings.

REDUCED PROPERTY OVER IDEMPOTENTS

  • Kwak, Tai Keun;Lee, Yang;Seo, Young Joo
    • Korean Journal of Mathematics
    • /
    • v.29 no.3
    • /
    • pp.483-492
    • /
    • 2021
  • This article concerns the property that for any element a in a ring, if a2n = an for some n ≥ 2 then a2 = a. The class of rings with this property is large, but there also exist many kinds of rings without that, for example, rings of characteristic ≠2 and finite fields of characteristic ≥ 3. Rings with such a property is called reduced-over-idempotent. The study of reduced-over-idempotent rings is based on the fact that the characteristic is 2 and every nonzero non-identity element generates an infinite multiplicative semigroup without identity. It is proved that the reduced-over-idempotent property pass to polynomial rings, and we provide power series rings with a partial affirmative argument. It is also proved that every finitely generated subring of a locally finite reduced-over-idempotent ring is isomorphic to a finite direct product of copies of the prime field {0, 1}. A method to construct reduced-over-idempotent fields is also provided.

REFLEXIVE PROPERTY ON IDEMPOTENTS

  • Kwak, Tai Keun;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.1957-1972
    • /
    • 2013
  • The reflexive property for ideals was introduced by Mason and has important roles in noncommutative ring theory. In this note we study the structure of idempotents satisfying the reflexive property and introduce reflexive-idempotents-property (simply, RIP) as a generalization. It is proved that the RIP can go up to polynomial rings, power series rings, and Dorroh extensions. The structure of non-Abelian RIP rings of minimal order (with or without identity) is completely investigated.

THE u-S-GLOBAL DIMENSIONS OF COMMUTATIVE RINGS

  • Wei Qi;Xiaolei Zhang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.6
    • /
    • pp.1523-1537
    • /
    • 2023
  • Let R be a commutative ring with identity and S a multiplicative subset of R. First, we introduce and study the u-S-projective dimension and u-S-injective dimension of an R-module, and then explore the u-S-global dimension u-S-gl.dim(R) of a commutative ring R, i.e., the supremum of u-S-projective dimensions of all R-modules. Finally, we investigate u-S-global dimensions of factor rings and polynomial rings.

MODULAR INVARIANTS UNDER THE ACTIONS OF SOME REFLECTION GROUPS RELATED TO WEYL GROUPS

  • Ishiguro, Kenshi;Koba, Takahiro;Miyauchi, Toshiyuki;Takigawa, Erika
    • Bulletin of the Korean Mathematical Society
    • /
    • v.57 no.1
    • /
    • pp.207-218
    • /
    • 2020
  • Some modular representations of reflection groups related to Weyl groups are considered. The rational cohomology of the classifying space of a compact connected Lie group G with a maximal torus T is expressed as the ring of invariants, H*(BG; ℚ) ≅ H*(BT; ℚ)W(G), which is a polynomial ring. If such Lie groups are locally isomorphic, the rational representations of their Weyl groups are equivalent. However, the integral representations need not be equivalent. Under the mod p reductions, we consider the structure of the rings, particularly for the Weyl group of symplectic groups Sp(n) and for the alternating groups An as the subgroup of W(SU(n)). We will ask if such rings of invariants are polynomial rings, and if each of them can be realized as the mod p cohomology of a space. For n = 3, 4, the rings under a conjugate of W(Sp(n)) are shown to be polynomial, and for n = 6, 8, they are non-polynomial. The structures of H*(BTn-1; 𝔽p)An will be also discussed for n = 3, 4.

ON WEAKLY LOCAL RINGS

  • Piao, Zhelin;Ryu, Sung Ju;Sung, Hyo Jin;Yun, Sang Jo
    • Korean Journal of Mathematics
    • /
    • v.28 no.1
    • /
    • pp.65-73
    • /
    • 2020
  • This article concerns a property of local rings and domains. A ring R is called weakly local if for every a ∈ R, a is regular or 1-a is regular, where a regular element means a non-zero-divisor. We study the structure of weakly local rings in relation to several kinds of factor rings and ring extensions that play roles in ring theory. We prove that the characteristic of a weakly local ring is either zero or a power of a prime number. It is also shown that the weakly local property can go up to polynomial (power series) rings and a kind of Abelian matrix rings.

RING WHOSE MAXIMAL ONE-SIDED IDEALS ARE TWO-SIDED

  • Huh, Chan;Jang, Sung-Hee;Kim, Chol-On;Lee, Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.39 no.3
    • /
    • pp.411-422
    • /
    • 2002
  • In this note we are concerned with relationships between one-sided ideals and two-sided ideals, and study the properties of polynomial rings whose maximal one-sided ideals are two-sided, in the viewpoint of the Nullstellensatz on noncommutative rings. Let R be a ring and R[x] be the polynomial ring over R with x the indeterminate. We show that eRe is right quasi-duo for $0{\neq}e^2=e{\in}R$ if R is right quasi-duo; R/J(R) is commutative with J(R) the Jacobson radical of R if R[$\chi$] is right quasi-duo, from which we may characterize polynomial rings whose maximal one-sided ideals are two-sided; if R[x] is right quasi-duo then the Jacobson radical of R[x] is N(R)[x] and so the $K\ddot{o}the's$ conjecture (i.e., the upper nilradical contains every nil left ideal) holds, where N(R) is the set of all nilpotent elements in R. Next we prove that if the polynomial rins R[x], over a reduced ring R with $\mid$X$\mid$ $\geq$ 2, is right quasi-duo, then R is commutative. Several counterexamples are included for the situations that occur naturally in the process of this note.