• Title/Summary/Keyword: polynomial basis

검색결과 232건 처리시간 0.021초

Design and Implementation of a Sequential Polynomial Basis Multiplier over GF(2m)

  • Mathe, Sudha Ellison;Boppana, Lakshmi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권5호
    • /
    • pp.2680-2700
    • /
    • 2017
  • Finite field arithmetic over GF($2^m$) is used in a variety of applications such as cryptography, coding theory, computer algebra. It is mainly used in various cryptographic algorithms such as the Elliptic Curve Cryptography (ECC), Advanced Encryption Standard (AES), Twofish etc. The multiplication in a finite field is considered as highly complex and resource consuming operation in such applications. Many algorithms and architectures are proposed in the literature to obtain efficient multiplication operation in both hardware and software. In this paper, a modified serial multiplication algorithm with interleaved modular reduction is proposed, which allows for an efficient realization of a sequential polynomial basis multiplier. The proposed sequential multiplier supports multiplication of any two arbitrary finite field elements over GF($2^m$) for generic irreducible polynomials, therefore made versatile. Estimation of area and time complexities of the proposed sequential multiplier is performed and comparison with existing sequential multipliers is presented. The proposed sequential multiplier achieves 50% reduction in area-delay product over the best of existing sequential multipliers for m = 163, indicating an efficient design in terms of both area and delay. The Application Specific Integrated Circuit (ASIC) and the Field Programmable Gate Array (FPGA) implementation results indicate a significantly less power-delay and area-delay products of the proposed sequential multiplier over existing multipliers.

GF($q^n$)상의 병렬 승산기 설계를 위한 기약다항식에 관한 연구 (A Study on Irreducible Polynomial for Construction of Parallel Multiplier Over GF(q$^{n}$ ))

  • 오진영;김상완;황종학;박승용;김홍수
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.741-744
    • /
    • 1999
  • In this paper, We represent a low complexity of parallel canonical basis multiplier for GF( q$^{n}$ ), ( q> 2). The Mastrovito multiplier is investigated and applied to multiplication in GF(q$^{n}$ ), GF(q$^{n}$ ) is different with GF(2$^{n}$ ), when MVL is applied to finite field. If q is larger than 2, inverse should be considered. Optimized irreducible polynomial can reduce number of operation. In this paper we describe a method for choosing optimized irreducible polynomial and modularizing recursive polynomial operation. A optimized irreducible polynomial is provided which perform modulo reduction with low complexity. As a result, multiplier for fields GF(q$^{n}$ ) with low gate counts. and low delays are constructed. The architectures are highly modular and thus well suited for VLSI implementation.

  • PDF

반복 기약다항식 기반의 효율적인 비트-병렬 다항식 기저 곱셈기 (Efficient Bit-Parallel Polynomial Basis Multiplier for Repeated Polynomials)

  • 장남수;김창한;홍석희
    • 정보보호학회논문지
    • /
    • 제19권6호
    • /
    • pp.3-15
    • /
    • 2009
  • 최근 Wu는 효율적인 비트-병렬 곱셈기를 위한 세 가지 종류의 이진체 제안하였다. 제안된 곱셈기는 오항 기약다항식을 사용하는 기존의 결과보다 효율적이다. 본 논문에서는 비트-병렬 곱셈에서 효율적인 이진체 위의 새로운 반복다항식(Repeated Polynomial:RP)을 제안한다. 제안하는 RP를 case 1, case 2와 case 3 3가지로 구분할 때, 제안하는 RP를 위한 비트-병렬 곱셈기는 기존의 오항 기약다항식의 결과보다 효율적이다. 유한체의 차수가 1,000이하에서 EPS 또는 삼항 기약다항식이 없는 차수를 고려할 때, Wu의 단지 11개의 유한체만 존재한다. 그러나 제안하는 결과는 case 1에서 181, case 2에서 232 그리고 case 3에서 443개의 유한체가 존재한다.

Improved Scalar Multiplication on Elliptic Curves Defined over $F_{2^{mn}}$

  • Lee, Dong-Hoon;Chee, Seong-Taek;Hwang, Sang-Cheol;Ryou, Jae-Cheol
    • ETRI Journal
    • /
    • 제26권3호
    • /
    • pp.241-251
    • /
    • 2004
  • We propose two improved scalar multiplication methods on elliptic curves over $F_{{q}^{n}}$ $q= 2^{m}$ using Frobenius expansion. The scalar multiplication of elliptic curves defined over subfield $F_q$ can be sped up by Frobenius expansion. Previous methods are restricted to the case of a small m. However, when m is small, it is hard to find curves having good cryptographic properties. Our methods are suitable for curves defined over medium-sized fields, that is, $10{\leq}m{\leq}20$. These methods are variants of the conventional multiple-base binary (MBB) method combined with the window method. One of our methods is for a polynomial basis representation with software implementation, and the other is for a normal basis representation with hardware implementation. Our software experiment shows that it is about 10% faster than the MBB method, which also uses Frobenius expansion, and about 20% faster than the Montgomery method, which is the fastest general method in polynomial basis implementation.

  • PDF

다항식기반 RBF 신경회로망을 이용한 2-클래스 문제에 대한 패턴분류 (Pattern Classification of Two Classes' Problem Using Polynomial based Radial Basis Function Neural Networks)

  • 김길성;박병준;오성권
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.451-452
    • /
    • 2007
  • 본 논문에서는 다항식 기반 Radial Basis Function(RBF)신경회로망(Polynomial based Radial Basis Function Neural Networks)을 설계하고 이를 2-클래스 패턴 분류 문제에 응용하여 그 성능을 분석한다. 제안된 다항식기반 RBF 신경회로망은 입력층, 은닉층, 출력 층으로 이루어진다. 입력층은 입력 벡터의 값들을 은닉 층으로 전달하는 기능을 수행하고 은닉층은 Fuzzy c-means 클러스터링을 통하여 뉴런의 출력 값으로 내보낸다. 은닉층과 출력층사이의 연결가중치는 상수, 선형식 또는 이차식으로 이루어지며 경사 하강법에 의해 학습된다. Networks의 최종 출력은 연결가중치와 은닉층 출력의 곱에 의해 퍼지추론의 결과로서 얻어진다. 제안된 다항식기반 RBF 신경회로망은 각기 다른 4종류의 2-클래스 분류 문제에 적용 및 평가되어 분류기로써의 성능을 분석한다.

  • PDF

그뢰브너 기저와 지시함수와의 관계 ($Gr\ddot{o}bner$ basis versus indicator function)

  • 김형순;박동권
    • Journal of the Korean Data and Information Science Society
    • /
    • 제20권6호
    • /
    • pp.1015-1027
    • /
    • 2009
  • 대수기하학적 접근이란 실험계획에서의 공간 내의 점들 즉, 기하학적 대상인 다양체에 대한 문제를 다항식을 매개로 하여 아이디얼 즉, 대수적 문제로 전환하고자 한 것이라 할 수 있다. 지금까지의 연구는 완전요인실험으로부터 효율적인 부분요인실험을 선택하는 절차에 집중되어 왔다. 본 논문에서는 지금까지 연구 방법의 역의 과정을 추정해 보기로 한다. 한 부분요인실험이 선택되었을 때, 그 실험의 교락구조를 그뢰브너 기저를 구한 후 해석한다. 다음으로 그뢰브너 기저를 생성자로 활용하여 선택된 부분실험의 집합을 구별하기 위한 다항함수인 지시함수를 구하는 절차를 알아보기로 한다. 실제로 몇 가지 부분요인실험을 예로 택하여 그 과정을 수행하였다. 연산은 CoCoA 대수연산 소프트웨어를 이용하였다.

  • PDF

Massey-Omura 승산기를 위한 최적 정규원소 (The Optimal Normal Elements for Massey-Omura Multiplier)

  • 김창규
    • 정보보호학회논문지
    • /
    • 제14권3호
    • /
    • pp.41-48
    • /
    • 2004
  • 유한체의 곱셈과 나눗셈은 오류정정부호와 암호시스템에서 중요한 산술 연산이다. 유한체 GF(2$^{m}$ )의 원소를 표현하기 위해 다양한 기저가 사용되며 차수가 m인 GF(2)상의 원시다항식으로 구성할 수 있다. 정규기저를 사용하면 곱셈이나 곱셈 역원의 연산을 쉽게 수행할 수 있다. 정규기저 표현을 이용하는 Massey-Omura 승산기는 동일한 2진함수를 사용하여 몇 번의 순회치환으로 곱셈 또는 나눗셈이 수행되며 논리함수의 곱셈항 수가 승산기의 복잡도를 결정한다. 유한체의 정규기저는 항상 존재한다. 그러나 주어진 원시다항식에 대해 최적의 정규원소를 구하는 것은 쉽지 않다. 본 논문에서는 정규기저의 생성 방법을 고찰하고, Massey-Omura 승산기를 이용한 곱셈 또는 곱셈 역원의 계산에서 연산의 복잡도를 최소화할 수 있는 정규기저를 각 원시다항식에 대해 구하여, 최적의 정규원소와 곱셈항의 개수를 제시한다.

최적화된 pRBF 뉴럴 네트워크에 이용한 삼상 부분방전 패턴분류에 관한 연구 (A Study on Three Phase Partial Discharge Pattern Classification with the Aid of Optimized Polynomial Radial Basis Function Neural Networks)

  • 오성권;김현기;김정태
    • 전기학회논문지
    • /
    • 제62권4호
    • /
    • pp.544-553
    • /
    • 2013
  • In this paper, we propose the pattern classifier of Radial Basis Function Neural Networks(RBFNNs) for diagnosis of 3-phase partial discharge. Conventional methods map the partial discharge/noise data on 3-PARD map, and decide whether the partial discharge occurs or not from 3-phase or neutral point. However, it is decided based on his own subjective knowledge of skilled experter. In order to solve these problems, the mapping of data as well as the classification of phases are considered by using the general 3-PARD map and PA method, and the identification of phases occurring partial discharge/noise discharge is done. In the sequel, the type of partial discharge occurring on arbitrary random phase is classified and identified by fuzzy clustering-based polynomial Radial Basis Function Neural Networks(RBFNN) classifier. And by identifying the learning rate, momentum coefficient, and fuzzification coefficient of FCM fuzzy clustering with the aid of PSO algorithm, the RBFNN classifier is optimized. The virtual simulated data and the experimental data acquired from practical field are used for performance estimation of 3-phase partial discharge pattern classifier.

A RECURSIVE FORMULA FOR THE KHOVANOV COHOMOLOGY OF KANENOBU KNOTS

  • Lei, Fengchun;Zhang, Meili
    • 대한수학회보
    • /
    • 제54권1호
    • /
    • pp.1-15
    • /
    • 2017
  • Kanenobu has given infinite families of knots with the same HOMFLY polynomial invariant but distinct Alexander module structure. In this paper, we give a recursive formula for the Khovanov cohomology of all Kanenobu knots K(p, q), where p and q are integers. The result implies that the rank of the Khovanov cohomology of K(p, q) is an invariant of p + q. Our computation uses only the basic long exact sequence in knot homology and some results on homologically thin knots.

Multiplexer와AOP를 적응한 $GF(2^m)$ 상의 승산기 설계 (The Design of $GF(2^m)$ Multiplier using Multiplexer and AOP)

  • 변기영;황종학;김흥수
    • 전자공학회논문지SC
    • /
    • 제40권3호
    • /
    • pp.145-151
    • /
    • 2003
  • 본 논문에서는 고속의 연산동작과 낮은 회로 복잡도를 갖는 새로운 GF(2/sup m/)상의 승산기를 제안한다. 유한체 연산은 다항식 승산과 기약다항식을 적용한 모듈러 연산에 의해 전개되며, 본 논문에서는 이 두 과정을 분리하여 다루었다. 다항식 승산연산은 Permestzi의 기법을 토대로 전개하였고 기약다항식은 AOP로 하였다. 멀티플렉서를 사용하여 GF(2/sup m/)상의 승산회로를 구성하였고, 회로 복잡도와 지연시간을 타 논문과 비교하였다. 제안된 승산기는 낮은 회로 복잡도와 지연시간을 보이며, 회로의 구성이 정규성을 가지므로 VLSI 구현에 적합하다.