• Title/Summary/Keyword: polymorphic bands

Search Result 281, Processing Time 0.026 seconds

Inter simple sequence repeat (ISSR)-PCR based polymorphism of Agaricus bisporus strains and monokayon isolates (Inter simple sequence repeat (ISSR)-PCR에 의한 양송이버섯(Agaricus bisporus) 계통과 단핵균주의 다형성 분석)

  • Min, Kyong-Jin;Kong, Won-Sik;Kang, Hee-Wan
    • Journal of Mushroom
    • /
    • v.13 no.3
    • /
    • pp.175-180
    • /
    • 2015
  • Twenty Inter simple sequence repeat (ISSR) primers were used to assess genetic diversity of 64 Agaricus strains including 45 A. bisporus strains and other 19 Agaricus spp. ISSR primers, (GA)T, (AG)YC, (GA)C and (CTC) amplified PCR polymorphic bands between the Agaricus species or within A. bisporus strains. PCR polymorphic bands were inputted for UPGMA cluster analysis. The varieties, Saea, Saedo, Saejeong and Saeyeon that have recently been developed in Korea were involved in the same group with closely genetic relationship of coefficient similarity over 0.92, whereas, other Korean strains were genetically related to A. bisporus strains that were introduced from USA, Eroupe and Chinese. Furthermore, ISSR-PCR polymorphism could potentially be used to identify homokaryon isolates.

Genetic Diversity of Penicillium isolates Isolated from Pears with Postharvest Decay in Storage (수확 후 저장 배에서 분리한 Penicillium속 균의 유전적 다양성)

  • Han, Do-Suk;Hong, Sung-Kee;Kang, Hee-Wan
    • The Korean Journal of Mycology
    • /
    • v.40 no.1
    • /
    • pp.11-18
    • /
    • 2012
  • This study was carried out to identify the genetic diversity of Penicillium isolates that were isolated from pears with postharvest decay in storage. URP-PCR was used to detect DNA diversity of 84 Penicillium isolates. Based on URP-PCR profiles, 18 Penicillium isolates were selected and their PCR polymorphic bands were produced by additional primers URP1F, URP2R, URP2F, and URP4R. UPGMA cluster analysis using the polymorphic bands showed four clustered groups and futhermore cultural and morphological features characterized the 18 Penicillium isolates. Group 1 was dominant, which occupies 70% in the four clustered groups and identified as P. expansum based on ITS sequence and morphological features.

Genetic polymorphism analysis of somatic embryo-derived plantlets of Cymbopogon flexuosus through RAPD assay

  • Bhattacharya, S.;Dey, T.;Bandopadhyay, T.K.;Ghosh, P.D.
    • Plant Biotechnology Reports
    • /
    • v.2 no.4
    • /
    • pp.245-252
    • /
    • 2008
  • The genetic status of somatic embryo-derived plantlets of Cymbopogon flexuosus was examined by randomly amplified polymorphic DNA (RAPD) analysis. Auxins such as 2, 4-dichlorophenoxyacetic acid (2, 4-D) (1-4 mg/l) were used in Murashige and Skoog (MS) medium for induction of calli from rhizomatous explants of Cymbopogon flexuosus. Optimum calli were induced on MS medium supplemented with 2, 4-dichlorophenoxyacetic acid (2, 4-D) (3.5 mg/l) alone or in combination with $N^6-benzyladenine$ (2 mg/l). Somatic embryogenesis was achieved from long term calli when cultured on MS medium containing 2, 4-dichlorophenoxyacetic acid (2, 4-D) (2 mg/l) along with $N^6-benzyladenine$ (BA) (1-2 mg/l). Regeneration was achieved when freshly induced embryogenic calli were sub-cultured on MS medium supplemented with $N^6-benzyladenine$ (3 mg/l) alone. Long-term cultured embryos showed profuse minute rooting on regeneration medium supplemented with N6 -benzyladenine (3 mg/l). Microshoots were rooted in the presence of indole-butyric acid (IBA) (2 mg/l). DNA samples from the mother plant and 18 randomly selected regenerated plants from a single callus were subjected to RAPD analysis with 6 arbitrary decamer primers for the selection of putative somaclones. A total of 64 band positions were scored, out of which 19 RAPD bands were polymorphic. From genetic similarity coefficient based on RAPD band data sharing, it was found that the majority of the clones were almost identical or more than 92% similar to the mother plant, except CL2 and CL9 (66%) which showed highest degree of genetic change with CL2 and CL9 showing presence of two non-parental bands each.

Genotyping of Agaricus bisporus Strains by PCR Fingerprints

  • Min, KyongJin;Oh, YounLee;Kang, HeeWan
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.41-41
    • /
    • 2014
  • Agaricus bisporus, commonly known as the button mushroom, is the most widely cultivated species of edible fungi. Low frequency of recombination ratio and homokaryotic or monokaryotic spore on meiotic basidia form obstacles for breeding programs. Since the first hybrid varieties for white button mushrooms were released in Europe, new varieties released afterwards were either identical of very similar to these first hybrids on morphologies. Therefore, different DNA markers have been used to define unique varieties of A. bisporus strains. Aim of this study is to assess the genetic diversity of different A. bisporus strains in Korea. Twelve UFP (Universal fungal primer, JK BioTech. Ltd), 12 simple sequence repeat (ISSR) and 30 SSR primers were used to assess genetic diversity of monokaryotic and dikaryotic Agaricus bisporus strains including other 19 Agaricus spp. Of them, four UFP, four SSR primers, $(GA)_8T$, $(AG)_8YC$, $(GA)_8C$ and $(CTC)_6$ and seven SSR markers produced PCR polymorphic bands between the Agaricus species or within A. bisporus strains. PCR polymorphic bands were inputted for UPGMA cluster analysis. Forty five strains of A. bisporus are genetically clustered into 6 groups, showing coefficient similarity from 0.75 to 0.9 among them. In addition, genetic variations of monokaryotic and dikaryotic Agaricus bisporus strains were partially detected by PCR technologies of this study. The varieties, Saea, saedo, Saejeong and Saeyeon that have recently been developed in Korea were involved in the same group with closely genetic relationship of coefficient similarity over 0.96, whereas, other strains were genetically related to A. bisporus strains that were introduced from USA, Eroupe and Chinese.

  • PDF

Identification of the Genetic Polymorphism of Bletilla striata Using RAPD (RAPD를 이용한 자란(Bletilla striata)의 유전적 다형성 분석)

  • Kyung, Yun Jeong;Yoon, Mi Jeong;Pak, Chun Ho
    • Horticultural Science & Technology
    • /
    • v.18 no.2
    • /
    • pp.103-106
    • /
    • 2000
  • The genetic relationship of Bletilla striata native to Korea and Japan was investigated using random amplified polymorphic DNA (RAPD). The 156 reproducible DNA bands, consisted of 58 polymorphic and 98 monomorphic bands, were obtained by polymerase chain reaction (PCR) with selected 10 random primers. The 8 Bletilla lines have been classified into three groups according to the similarity coefficient obtained by RAPD analysis. The dendrogram showed overall correlationship between similarity coefficient of 0.48 and 0.84. The first group included A (Bletilla striata native to Korea), B (Bletilla striata variegated and native to Korea in Mokpo), C (Bletilla striata variegated and native to Korea), D and E (Bletilla striata native to Japan). In this group, it was showed that B and C had the most similar genetic relationship. The similarity coefficient between D and E was 0.77. D and E had a very close resemblance in plant height and flower color with A native to Korea, respectively. The second group included only G (dwarf Bletilla native to Japan) and had a different morphological character compared to other cultivars. The last group included F and H (dwarf and variegated Bletilla native to Japan) and they had a similarity of variegation.

  • PDF

Genomic Polymorphisms of Genome DNA by Polymerase Chain Reaction-RAPD Analysis Using Arbitrary Primers in Rainbow Trout (PCR-RAPD 기법에 의한 무지개송어 Genome DNA 의 다형현상)

  • Yoon, J.M.
    • Korean Journal of Animal Reproduction
    • /
    • v.23 no.4
    • /
    • pp.303-311
    • /
    • 1999
  • Nuclear DNA was isolated from the sperm cells representing genetic characteristics and genomic polymorphisms of rainbow trout by polymerase chain reaction(PCR) amplification of DNA using arbitrary primers. Genomic DNA fingerprints were generated from rainbow trout sperm DNA by polymerase chain reaction amplification using 20 arbitrary decamers as primers. Out of these primers, 4 generated 17 highly reproducible RAPD markers, producing almost six polymorphic bands per primers. Four of 6 primers tested generated amplified fragments which were polymorphic between different individuals. Polymorphic DNA fragments were reproducibly amplified from independent DNA preparations made from individuals. Rainbow trout was distinctly observed 3 specific DNA markers (2. 3, 2.0 and 1.3kb) in bandsharing. Individual fragments generated using the same arbitrary primer, demonstrated that a single primer detected at least three independent genomic polymorphisms in rainbow trout sperm DNA. The RAPD polymorphism generated by this primer may be used as a genetic marker for individual identification The RAPD-PCR technique has been shown to reveal informative polymorphism in many species of fish. The present results demonstrate that RAPD markers are abundant, reproducible and provide a basis for future gene mapping and MAS in these important aquaculture species using RAPD polymorphic markers. It is concluded that RAPD polymorphisms are useful as genetic markers for fish breed differentiation.

  • PDF

Differentiation of Lentinus edodes Isolates in Korea by Isozyme Polymorphisms and Random Amplified Polymorphic DNA (RAPD) Analysis (Isozyme Polymorphism 및 Random Amplified Polymorphic DNA(RAPD) Pattern에 의한 표고 버섯 품종간 비교)

  • Park, Won-Mok;Ko, Han-Gyu;Park, Ro-Jo;Hong, Ki-Sung;Kim, Gyu-Hyun
    • The Korean Journal of Mycology
    • /
    • v.25 no.3 s.82
    • /
    • pp.176-190
    • /
    • 1997
  • Sixty-three isolates of Lentinus edodes obtained from Korea were used to assess the genetic similarity by isozyme polymorphisms and random amplified polymorphic DNA patterns. The activities of esterase, peroxidase and acid phosphatase displayed 10, 7 and 3 distinct isozyme patterns, respectively. By combining the isozyme patterns obtained with the 3 enzymes, every isolate showed its own distinct electrophoretic phenotypes. A distance matrix calculated between all pairs of 63 electrophoretic phenotypes based on the presence or abscence of isozyme bands were analyzed by the group-average method. Results of the cluster analysis assinged the 63 phenotypes into six major groups. In the analysis of random amplified polymorphic DNA patterns, all isolates of Lentinus edodes were devided into five RAPD groups.

  • PDF

Characteristics and breeding of a thermotolerant ear mushroom, Auricularia auricula-judae 'Hyeonyu' (고온적응성 목이버섯 「현유」 육성 및 특성)

  • Lee, Gl-Kwon;Yu, Young-Jin
    • Journal of Mushroom
    • /
    • v.15 no.2
    • /
    • pp.84-87
    • /
    • 2017
  • Although ear mushroom (Auricularia auricula-judae) is cultivated worldwide, there are a limited number of commercial cultivars in Korea. Recent increase in the import of ear mushroom from China threatens the domestic farming. The present study introduces a new thermotolerant cultivar of ear mushroom, designated 'Hyeonyu', developed by mating monokaryons obtained from JBAA11 and CAA1 strains. The optimal growth temperature for Hyeonyu was 26-36?. The periods of primordia formation and fruit-body growth were 27 and 15 days, respectively. The average mushroom yield per bag (1 kg) was 350 g. Random amplification of polymorphic DNA (RAPD) analysis with OPA1 and OPA7 primers identified polymorphic DNA bands between the control, the new variety Hyeonyu, and a Chinese variety.

Analysis of Genetic Variability Using RAPD Markers in Paeonia spp. Grown in Korea

  • Lim, Mi Young;Jana, Sonali;Sivanesan, Iyyakkannu;Park, Hyun Rho;Hwang, Ji Hyun;Park, Young Hoon;Jeong, Byoung Ryong
    • Horticultural Science & Technology
    • /
    • v.31 no.3
    • /
    • pp.322-327
    • /
    • 2013
  • The genetic diversity and phylogenetic relationships of eleven herbaceous peonies grown in Korea were analyzed by random amplified polymorphic DNA (RAPD). Twenty-four decamer RAPD primers were used in a comparative analysis of these Korean peony species. Of the 142 total RAPD fragments amplified, 124 (87.3%) were found to be polymorphic. The remaining 18 fragments were found to be monomorphic (12.7%) shared by individuals of all 11 peony species. Cluster analysis based on the presence or absence of bands was performed by Jaccard's similarity coefficient, based on Unweighted Pair Group Method with Arithmetic Averages. Genetic similarity range was 0.39 to 0.90 with a mean of 0.64. This study offered a rapid and reliable method for the estimation of variability among different peony species which could be utilized by the breeders for further improvement of the local peony species. Also, the results propose that the RAPD marker technique is a useful tool for evaluation of genetic diversity and relationship amongst different peony species.

Selection and Agronomics Characterization of Radiation-Induced Variants in Rice (방사선 처리에 의해 유도된 돌연변이 벼의 주요 특징)

  • Lee, In-Sok;Kim, Dong-Sup;Choi, Su-Ryun;Song, Hi-Sup;Lee, Sang-Jae;Lim, Yong-Pyo;Lee, Young-Il
    • Journal of Plant Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.227-232
    • /
    • 2003
  • Radiation technique has been used to develope mutant rice. Suwon 345 rice seeds were irradiated with 250 Gy gamma ray. Morphological characteristics of the variants in M$_{8}$ generation were observed and random amplified polymorphic DNA(RAPD) analysis was carried out. Plant height, panicle length, 1,000 grain weight and lodging were very different in mutants compared with donor cultivar. RAPD analysis showed that polymorphic bands were presented in several primers of the mutants. In comparison with original variety, variants were classified into four group through UPGMA analysis. A group has mutation trait in panicle length, B group in plant height and C group in 1,000 grain weight. Among mutants, no. 46 and 147 was ranked as salt tolerance and the malonaldehyde content of these mutants was more increased than that of original variety. Valuable mutants obtained will be useful for developing new cultivars and for studing gene function in molecular level.l.