• Title/Summary/Keyword: polymer-based coating

Search Result 168, Processing Time 0.026 seconds

Morphology Characteristics of Insulating Laser based on Aqueous Polymer Resin Fabricated by Ultrasonic Spray Coating Process (수성 폴리머 도료를 이용한 초음파 스프레이 공정으로 형성된 폴리머 절연층 미세구조 특성)

  • Yu, Jeong-Mo;Park, Chae-Won;Eom, Hyeon-Jin
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2016.11a
    • /
    • pp.136-136
    • /
    • 2016
  • Commonly used oil-based polymer resin has environmental and safety issues. Many researches for replacing the harmful solvent-borne resins to water-borne resins have been investigated to purify harmful environmental resources and follow the export and import of hazardous materials regulations. In this research, ultrasonic spray coatings of aqueous polymer resin were studied to fabricate thin insulating layer (${\sim}{\mu}m$) on the rectangular copper wire. It needs to have appropriate wettability between resin and substrate during the ultrasonic spray coating process to coat aqueous polymer uniformly. Furthermore, stabilities of coating solution and fabricating process are required to form thin insulating layer on the substrate. In here, physical characteristics such as viscosity of 6 types of commercial polymer dispersions and emersions were analyzed to confirm compatibility for ultrasonic spray coating process. These resins were dissolved in isopropyl alcohol, used for true solvent, and were diluted with ethanol, utilized for diluent. Also, solubilities, dispersion characteristics, and viscosities of these diluted polymer resin solutions were confirmed. Dispersion characteristic and viscosity of coating solution affects jetting of ultrasonic spray coating and these jetting characteristics influence morphologies of insulating layer. In conclusion, we have known that aqueous polymer solution should have outstanding dispersion characteristic and certain range of viscosity to fabricate thin polymer insulating layer uniformly with ultrasonic spray coating.

  • PDF

3-Dimensional Coating Polymer Microneedles for Economical and Efficient Transdermal Drug Delivery (경제적이고 효과적인 경피 약물전달을 위한 3차원 구조의 코팅 고분자 마이크로니들)

  • Lee, Han-Sol;Park, Jung-Hwan
    • Polymer(Korea)
    • /
    • v.38 no.3
    • /
    • pp.391-396
    • /
    • 2014
  • Polymer microneedles can be fabricated by a micromolding method, an easy and cost-effective method. However, it is not easy to achieve uniform coating with an aqueous coating solution due to hydrophobic surface of polymer microneedles. 3-Dimensional coating polymer microneedles could deliver more than twice as much dose as in-plane metal microneedles by increasing coating area and the number of microneedles per unit area. A uniform coating was not obtained by addition of coating additives in the coating solution. The satisfied coating was achieved by treatment of surface of polymer microneedle with metal deposition and UV/ozone, and UV/ozone treatment was an ultimate surface treatment method based on biological safety. Calcein coating polymer microneedles were prepared by using UV/ozone treatment and followed dip-coating, and they delivered calcein in porcine skin successfully after 15 min of insertion.

A Study on the Evaluation of Carbonation Resistance of Fire Damaged Fiber-Reinforced High Strength Concrete with the Type of Surface Repair Materials (섬유혼입 고강도 콘크리트의 화재 후 표면보수재료의 종류에 따른 중성화 저항성 비교·평가에 관한 연구)

  • Sim, Sang-Rak;Ryu, Dong-Woo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.81-82
    • /
    • 2020
  • In this study, after applying a silicate-based impregnation and polymer-based coating to fire damaged high strength concrete, carbonation resistance was evaluated to compare and evaluate the carbonation depth according to the type of surface repair materials. As a result of the experiment, it was confirmed that the carbonation resistance was increased in the case of the concrete with the surface repair materials compared to the control specimen without the surface repair materials. In particular, in the case of the polymer-based coating agent, it was confirmed that the carbonation hardly progressed.

  • PDF

Improving Gas Barrier Property of Polymer Based Nanocomposites Using Layer by Layer Deposition Method for Hydrogen Tank Liner

  • Lee, Suyeon;Han, Hye Seong;Seong, Dong Gi
    • Composites Research
    • /
    • v.35 no.3
    • /
    • pp.121-126
    • /
    • 2022
  • Owing to advantages of polymeric materials for hydrogen tank liner like light-weight property and high specific strength, polymer based composites have gained much attention. Despite of many benefits, polymeric materials for fuel cell tank cause problems which is critical to applications as low gas barrier property, and poor processability when adding fillers. For these reasons, improving gas barrier property of polymer composites is required to study for expanding application fields. This work presents impermeable polymer nanocomposites by introducing thin barrier coating using layer by layer (LBL) deposition method. Also, bi-layered and quad-layered nanocomposites were fabricated and compared for identifying relationship between deposition step and gas barrier property. Reduction in gas permeability was observed without interrupting mechanical property and processability. It is discussed that proper coating conditions were suggested when different coating materials and deposition steps were applied. We investigated morphology, gas barrier property and mechanical properties of fabricated nanocomposites by FE-SEM, Oxygen permeation analyzer, UTM, respectively. In addition, we revealed the mechanism of barrier performance of LBL coating using materials which have high aspect ratio.

Biodegradable PLGA Polymer Coating on Biomedical Metal Implants Using Electrospraying (전기분사를 이용한 의료용 금속 임플란트의 생분해성 PLGA 고분자 코팅)

  • Cho, Seong-Bae;Park, Chul-Ho;Park, Kwi-Deok;Chung, Dong-Jun;Han, Dong-Keun
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.620-624
    • /
    • 2009
  • Biomedical metal implants have been used clinically for replacement, restoration, or improvement of injury bodies based on high mechanical properties, but it has some risks such as the inflammatory, late thrombosis, or restenosis due to the low biocompatibility and toxicity. In various techniques of surface treatment developed to preserve these drawbacks, this study examined the electrospray coating technology with biodegradable poly (lactic-co-glycoic acid) (PLGA) on metal surface. Based on fundamental examination of electrospraying and solution parameters, the surface morphology of coated film was closely related to the boiling point of solvent, in-flight distance, and droplet size. The thickness of polymer film was linearly proportional to the emerged volume. This result exhibits that the polymeric droplets were continuously deposited on the polymer film. Therefore, the electrospray coating technology might be applied into the fabrication of single/multi-layered polymer film in nano-/micro-thickness and the control of the topology for biomedical metal implants including stents.

Comparison of Properties of Polymer Based Glass Lenses by Chemical Etching Reaction (고분자 안경 렌즈의 재질별 화학적 식각 반응성 비교)

  • Lee, Junghwa;Noh, Hyeran
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.17 no.2
    • /
    • pp.119-126
    • /
    • 2012
  • Purpose: To study changes in coating and lens materials after chemically etched different polymer based glass lenses in short-term and ambient condition using hydrofluoric acid. Methods: Vinyl ester polymer (Lens A) and thiourethane polymer (Lens B), both dyed in gray 70%, were etched in hydrofluoric acid solution for 5, 10, or 15 min. The mechanical properties, degrees of damages in hard coating, anti-reflection coating, and other coatings, rates of refractive index and light transmission of both polymer types were evaluated. Results: Rates of refractive index of both lens types were not changed significantly after chemical etching. However, anti-reflection coatings and hard coatings were removed and lens surfaces were damaged. As a results, UV light transmission of lenses increased and mechanical properties decreased. Chemical etching notably changed various properties of thiourethane polymer materials. Conclusions: Depending on types of polymer materials, chemical reactions by hydrofluoric acid were dissimilar. Thus, various properties of les materials were altered differently.

Printing of Polymer Dielectric via Optimal Blade Coating for Large-scale Low-Leakage Capacitors (대면적 저누설 커패시터를 위한 최적화 블레이드 코팅 기반 고분자 유전체 프린팅)

  • Seo, Kyeong-Ho;Bae, Jin-Hyuk
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.1
    • /
    • pp.51-55
    • /
    • 2021
  • We demonstrated a polymer dielectric with low leakage characteristics through an optimal blade coating method for low-cost and large-scale fabrication of metal-insulator-metal (MIM) capacitors. Cross-linked poly(4-vinylphenol) (C-PVP), which is a typically used polymer dielectric, was coated on a 10 × 10 cm indium-tin-oxide (ITO) deposited glass substrate by changing the deposition temperature (TD) and coating velocity (VC) in the blade coating. During the blade coating, the thickness of the thin c-PVP varied depending on TD and VC owing to the 'Landau-Levich (LL) regime'. The c-PVP-dielectric-based MIM capacitor fabricated in this study showed the lowest leakage current characteristics (10-6 A/㎠ at 1.2 MV/㎠, annealing at 200 ℃) and uniform electrical characteristics when TD was 30 ℃ and VC was 5 mm/s. In addition, at TD = 30 ℃, stable leakage characteristics were confirmed when a different electric field was applied. These results are expected to positively contribute to applications with next-generation electronic devices.

Preparation of Unsaturated Polyester-based Hybrid Gel-Coats Containing Urethane Acrylate and Their Coating Performance

  • Kim, Ji-Hee;Baek, Seung-Suk;Kim, Oh Young;Park, Dong Hyup;Hwang, Seok-Ho
    • Elastomers and Composites
    • /
    • v.54 no.3
    • /
    • pp.247-251
    • /
    • 2019
  • Two different urethane acrylates (mono-acrylate and di-acrylate) were used to prepare unsaturated polyester-based hybrid gel-coats. The physical properties and surface characteristics of these gel-coats were investigated on the basis of the content and type of urethane acrylate. The set-to-touch time increased and the physical properties (surface hardness and tensile strength) decreased with an increase in the urethane acrylate content. However, the type of urethane acrylate did not affect these parameters. It was found that the optimal urethane acrylate content for the application of unsaturated polyester-based hybrid gel-coats is ~10 wt%.

Polymer brush: a promising grafting approach to scaffolds for tissue engineering

  • Kim, Woonjung;Jung, Jongjin
    • BMB Reports
    • /
    • v.49 no.12
    • /
    • pp.655-661
    • /
    • 2016
  • Polymer brush is a soft material unit tethered covalently on the surface of scaffolds. It can induce functional and structural modification of a substrate's properties. Such surface coating approach has attracted special attentions in the fields of stem cell biology, tissue engineering, and regenerative medicine due to facile fabrication, usability of various polymers, extracellular matrix (ECM)-like structural features, and in vivo stability. Here, we summarized polymer brush-based grafting approaches comparing self-assembled monolayer (SAM)-based coating method, in addition to physico-chemical characterization techniques for surfaces such as wettability, stiffness/elasticity, roughness, and chemical composition that can affect cell adhesion, differentiation, and proliferation. We also reviewed recent advancements in cell biological applications of polymer brushes by focusing on stem cell differentiation and 3D supports/implants for tissue formation. Understanding cell behaviors on polymer brushes in the scale of nanometer length can contribute to systematic understandings of cellular responses at the interface of polymers and scaffolds and their simultaneous effects on cell behaviors for promising platform designs.

Novel Coatable Polarizer Based on Polymer-Stabilized Lyotropic Chromonic Liquid Crystals

  • Bae, Yun-Ju;Jeong, Kwang-Un;Shin, Seung-Han;Lee, Myong-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.517-519
    • /
    • 2009
  • We fabricated thin film polarizer by coating lyotropic chromonic liquid crystals (LCLCs) dissolved in anionic monomer solution. Compared to water-based technique, the new method provided many advantages such as excellent coatability, good adhesion to various substrates, and superb surface hardness.

  • PDF