• Title/Summary/Keyword: polymer network

Search Result 382, Processing Time 0.024 seconds

Dual Responsive Pectin Hydrogels and Their Silver Nanocomposites: Swelling Studies, Controlled Drug Delivery and Antimicrobial Applications

  • Reddy, P. Rama Subba;Eswaramma, S.;Krishna Rao, K.S.V.;Lee, Yong Ill
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.8
    • /
    • pp.2391-2399
    • /
    • 2014
  • Novel dual responsive pectin hydrogels composed from poly(acrylamidoglycolic acid-co-vinylcaprolactam)/Pectin (PAV-PC) and also PAV-PC hydrogels are used as templates for the production of silver nanoparticles. 5-Fluorouracil is an anticancer drug and has been loaded in situ into PAV-PC hydrogels. Structure and morphology characterization of PAV-PC hydrogels were investigated by fourier transform infrared spectroscopy, differential scanning calorimetry, thermo gravimetric analysis, X-ray diffraction studies, scanning electron microscopy and transmission electron microscopy. The results revealed a molecular level dispersion of the drug in PAV-PC hydrogels. In vitro release of 5-fluorouracil from the PAV-PC hydrogels has been carried out in GIT fluids as well as in various temperatures. 5-Fluorouracil released from PAV-PC hydrogels was 50% at pH 1.2, and 85% at pH 7.4 within 24 h. The release profile was characterized with PAV-PC hydrogels and initial burst effect was significantly reduced in two buffer media (1.2 and 7.4), followed by a continuous and controlled release phase, the drug release mechanism from polymer was due to Fickian diffusion. In situ fabrication of silver nanoparticles inside the hydrogel network via the reduction of sodium borohydrate by PAV-PC chains led to hydrogel nanocomposites. The diameter of the nanocomposites was about 50-100 nm, suitable for uptake within the gastrointestinal tract due to their nanosize range and mucoadhesive properties. These nanocomposite PAV-PC hydrogels showed strong antimicrobial activity towards Bacillus subtilis (G+ve) and Escherichia coli (G-ve).

Synthesis of Alumina Nano Particles by PAA Gel Method from Kaolin (카올린으로부터 PAA Gel법에 의한 알루미나 나노 입자의 합성)

  • 김지경;이상근;신준식;홍성수;박성수;박희찬
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.253-258
    • /
    • 2004
  • Non-aggregated nanoscale $\alpha$-Al$_2$O$_3$ powders were prepared successfully by polyacrylamine (PAA) gel method. The method was very simple and polymer network inhibited the aggregate of $\alpha$-Al$_2$O$_3$ powders. In this investigation, nanoparticles of $\alpha$-Al$_2$O$_3$ with a diameter of about 8-15 nm were fabricated by calcining the gel precusors with various concentrations of aluminum sulfate, acrylamide and N,N'-methylene-bis-acrylamide (BIS) in air at 110$0^{\circ}C$ for 2 h. The molar ratio of aluminum sulfate to acrylamide did not have any influence on the size of particles. On the other hand, as the molar ratio of BIS to acrylamide increased, the size of nanoparticles decreased.

Effect of surface treatments and universal adhesive application on the microshear bond strength of CAD/CAM materials

  • Sismanoglu, Soner;Gurcan, Aliye Tugce;Yildirim-Bilmez, Zuhal;Turunc-Oguzman, Rana;Gumustas, Burak
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.1
    • /
    • pp.22-32
    • /
    • 2020
  • PURPOSE. The aim of this study was to evaluate the microshear bond strength (µSBS) of four computer-aided design/computer-aided manufacturing (CAD/CAM) blocks repaired with composite resin using three different surface treatment protocols. MATERIALS AND METHODS. Four different CAD/CAM blocks were used in this study: (1) flexible hybrid ceramic (FHC), (2) resin nanoceramic (RNC), (c) polymer infiltrated ceramic network (PICN) and (4) feldspar ceramic (FC). All groups were further divided into four subgroups according to surface treatment: control, hydrofluoric acid etching (HF), air-borne particle abrasion with aluminum oxide (AlO), and tribochemical silica coating (TSC). After surface treatments, silane was applied to half of the specimens. Then, a silane-containing universal adhesive was applied, and specimens were repaired with a composite, Next, µSBS test was performed. Additional specimens were examined with a contact profilometer and scanning electron microscopy. The data were analyzed with ANOVA and Tukey tests. RESULTS. The findings revealed that silane application yielded higher µSBS values (P<.05). All surface treatments were showed a significant increase in µSBS values compared to the control (P<.05). For FHC and RNC, the most influential treatments were AlO and TSC (P<.05). CONCLUSION. Surface treatment is mandatory when the silane is not preferred, but the best bond strength values were obtained with the combination of surface treatment and silane application. HF provides improved bond strength when the ceramic content of material increases, whereas AlO and TSC gives improved bond strength when the composite content of material increases.

Three-Phase Z-Source Hybrid Active Power Filter System (3상 Z-소스 하이브리드 능동전력필터 시스템)

  • Lim, Young-Cheol;Kim, Jae-Hyun;Jung, Young-Gook
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.75-85
    • /
    • 2010
  • In this paper, a Z-source hybrid active power filter is proposed to compensate the harmonics and reactive power in power distribution system. The proposed system is composed of a 7th harmonics-tuned passive filter and an active power filter with a Z-source inverter topology, while voltage source PWM inverter or current source PWM inverter are applied as the power converter topology of conventional active power filters. The Z-source impedance network along with shoot through capability would ensure a constant DC voltage across the DC link. A polymer electrolyte membrane fuel cell is employed as an compensation DC energy source of the proposed system and its equivalent R-L-C circuit is modeled for simulation. As the compensation and control algorithm of the proposed system, the current synchronous detection algorithm is applied. The simulation analysis by PSIM is performed under the three-phase 220V/60Hz voltage source and 25A nonlinear diode loads. The effectiveness of the proposed the system is verified in the steady and transient states.

SHEAR BOND STRENGTHS BETWEEN ABRASION-RESISTANT DENTURE TEETH AND COMPOSITE RESINS (의치용 레진치와 수복용 복합레진 간의 결합강도에 관한 연구)

  • Kim, Mee-Lee;Jeong, Chang-Mo;Jeon, Young-Chan;Lim, Jang-Seop
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.2
    • /
    • pp.201-212
    • /
    • 2002
  • This study investigated the shear bond strengths between abrasion-resistant denture teeth and composite resins according to surface treatments. Denture teeth for this study were Trubyte IPN teeth(Dentsply Inc., USA) with interpenetrating polymer network and Endura Posterio (Shofu Inc. Japan) of composite resin teeth, and restorative composite resins were Clearfil FII (Kuraray, Japan) of the self-cured composite resin and Z100(3M Dental Product, USA) of the light-cured composite resin. Five different surface treatments were evaluated: (1) $50{\mu}m\;A1_2O_3$ sandblasting: (2) #100 carbide paper; (3) chloroform; (4) retentive holes; and (5) no treatment. After surface treatments, denture teeth were examined by scanning electron microscopy(SEM), and the maximum shear bond strengths between abrasion-resistant denture teeth and composite resins were measured using Instron. The results were as follows; 1. IPN teeth treated with sandblasting had the highest shear bond strength, and Endura treated with sandblasting and carbide paper had significantly greater shear bond strength than with any other surface treatment. 2. Regardless or composite resins, the shear bond strength on Endura was greater than on IPN teeth. 3. Regardless of denture teeth, the shear bond strength of Clearfil FII was greater han of Z100. 4. In appearance of SEM, IPN teeth treated with sandblasting showed generalized roughness on the all of surface, however, carbide paper treatment resulted in partly rough. Endura treated with sandblasting and carbide paper showed similar surface characteristics. Wetting denture teeth surface with chloroform removed the debris and created a particle-free and smooth surface.

Preparation of Pt Catalysts Supported on ACF with CNF via Catalytic Growth

  • Park, Sang-Sun;Rhee, Jun-Ki;Jeon, Yu-Kwon;Choi, Sung-Won;Shul, Yong-Gun
    • Carbon letters
    • /
    • v.11 no.1
    • /
    • pp.38-40
    • /
    • 2010
  • Carbon supported electrocatalysts are commonly used as electrode materials for polymer electrolyte membrane fuel cells(PEMFCs). These kinds of electrocatalysts provide large surface area and sufficient electrical conductivity. The support of typical PEM fuel cell catalysts has been a traditional conductive type of carbon black. However, even though the carbon particles conduct electrons, there is still significant portion of Pt that is isolated from the external circuit and the PEM, resulting in a low Pt utilization. Herein, new types of carbon materials to effectively utilize the Pt catalyst are being evaluated. Carbon nanofiber/activated carbon fiber (CNF/ACF) composite with multifunctional surfaces were prepared through catalytic growth of CNFs on ACFs. Nickel nitrate was used as a precursor of the catalyst to synthesize carbon nanofibers(CNFs). CNFs were synthesized by pyrolysising $CH_4$ using catalysts dispersed in acetone and ACF(activated carbon fiber). The as-prepared samples were characterized with transmission electron microscopy(TEM), scanning electron microscopy(SEM). In TEM image, carbon nanofibers were synthesized on the ACF to form a three-dimensional network. Pt/CNF/ACF was employed as a catalyst for PEMFC. As the ratio of prepared catalyst to commercial catalyst was changed from 0 to 50%, the performance of the mixture of 30 wt% of Pt/CNF/ACF and 70wt% of Pt/C commercial catalyst showed better perfromance than that of 100% commercial catalyst. The unique structure of CNF can supply the significant site for the stabilization of Pt particles. CNF/ACF is expected to be promising support to improve the performance in PEMFC.

Facile Low-temperature Chemical Synthesis and Characterization of a Manganese Oxide/multi-walled Carbon Nanotube Composite for Supercapacitor Applications

  • Jang, Kihun;Lee, Sung-Won;Yu, Seongil;Salunkhe, Rahul R.;Chung, Ildoo;Choi, Sungmin;Ahn, Heejoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.10
    • /
    • pp.2974-2978
    • /
    • 2014
  • $Mn_3O_4$/multi-walled carbon nanotube (MWCNT) composites are prepared by chemically synthesizing $Mn_3O_4$ nanoparticles on a MWCNT film at room temperature. Structural and morphological characterization has been carried out using X-ray diffraction (XRD) and scanning and transmission electron microscopies (SEM and TEM). These reveal that polycrystalline $Mn_3O_4$ nanoparticles, with sizes of about 10-20 nm, aggregate to form larger nanoparticles (50-200 nm), and the $Mn_3O_4$ nanoparticles are attached inhomogeneously on MWCNTs. The electrochemical behavior of the composites is analyzed by cyclic voltammetry experiment. The $Mn_3O_4$/MWCNT composite exhibits a specific capacitance of $257Fg^{-1}$ at a scan rate of $5mVs^{-1}$, which is about 3.5 times higher than that of the pure $Mn_3O_4$. Cycle-life tests show that the specific capacitance of the $Mn_3O_4$/MWCNT composite is stable up to 1000 cycles with about 85% capacitance retention, which is better than the pure $Mn_3O_4$ electrode. The improved supercapacitive performance of the $Mn_3O_4$/MWCNT composite electrode can be attributed to the synergistic effects of the $Mn_3O_4$ nanoparticles and the MWCNTs, which arises not only from the combination of pseudocapacitance from $Mn_3O_4$ nanoparticles and electric double layer capacitance from the MWCNTs but also from the increased surface area, pore volume and conducting property of the MWCNT network.

Reliable Anisotropic Conductive Adhesives Flip Chip on Organic Substrates For High Frequency Applications

  • Paik, Kyung-Wook;Yim, Myung-Jin;Kwon, Woon-Seong
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.04a
    • /
    • pp.35-43
    • /
    • 2001
  • Flip chip assembly on organic substrates using ACAs have received much attentions due to many advantages such as easier processing, good electrical performance, lower cost, and low temperature processing compatible with organic substrates. ACAs are generally composed of epoxy polymer resin and small amount of conductive fillers (less than 10 wt.%). As a result, ACAs have almost the same CTE values as an epoxy material itself which are higher than conventional underfill materials which contains lots of fillers. Therefore, it is necessary to lower the CTE value of ACAs to obtain more reliable flip chip assembly on organic substrates using ACAs. To modify the ACA composite materials with some amount of conductive fillers, non-conductive fillers were incorporated into ACAs. In this paper, we investigated the effect of fillers on the thermo-mechanical properties of modified ACA composite materials and the reliability of flip chip assembly on organic substrates using modified ACA composite materials. Contact resistance changes were measured during reliability tests such as thermal cycling, high humidity and temperature, and high temperature at dry condition. It was observed that reliability results were significantly affected by CTEs of ACA materials especially at the thermal cycling test. Results showed that flip chip assembly using modified ACA composites with lower CTEs and higher modulus by loading non-conducting fillers exhibited better contact resistance behavior than conventional ACAs without non-conducting fillers. Microwave model and high-frequency measurement of the ACF flip-chip interconnection was investigated using a microwave network analysis. ACF flip chip interconnection has only below 0.1nH, and very stable up to 13 GHz. Over the 13 GHz, there was significant loss because of epoxy capacitance of ACF. However, the addition of $SiO_2filler$ to the ACF lowered the dielectric constant of the ACF materials resulting in an increase of resonance frequency up to 15 GHz. Our results indicate that the electrical performance of ACF combined with electroless Wi/Au bump interconnection is comparable to that of solder joint.

  • PDF

Injectable hydrogels delivering therapeutic agents for disease treatment and tissue engineering

  • Lee, Jin Hyun
    • Biomaterials Research
    • /
    • v.22 no.4
    • /
    • pp.235-248
    • /
    • 2018
  • Background: Injectable hydrogels have been extensively researched for the use as scaffolds or as carriers of therapeutic agents such as drugs, cells, proteins, and bioactive molecules in the treatment of diseases and cancers and the repair and regeneration of tissues. It is because they have the injectability with minimal invasiveness and usability for irregularly shaped sites, in addition to typical advantages of conventional hydrogels such as biocompatibility, permeability to oxygen and nutrient, properties similar to the characteristics of the native extracellular matrix, and porous structure allowing therapeutic agents to be loaded. Main body: In this article, recent studies of injectable hydrogel systems applicable for therapeutic agent delivery, disease/cancer therapy, and tissue engineering have reviewed in terms of the various factors physically and chemically contributing to sol-gel transition via which gels have been formed. The various factors are as follows: several different non-covalent interactions resulting in physical crosslinking (the electrostatic interactions (e.g., the ionic and hydrogen bonds), hydrophobic interactions, ${\pi}$-interactions, and van der Waals forces), in-situ chemical reactions inducing chemical crosslinking (the Diels Alder click reactions, Michael reactions, Schiff base reactions, or enzyme-or photo-mediated reactions), and external stimuli (temperatures, pHs, lights, electric/magnetic fields, ultrasounds, or biomolecular species (e.g., enzyme)). Finally, their applications with accompanying therapeutic agents and notable properties used were reviewed as well. Conclusion: Injectable hydrogels, of which network morphology and properties could be tuned, have shown to control the load and release of therapeutic agents, consequently producing significant therapeutic efficacy. Accordingly, they are believed to be successful and promising biomaterials as scaffolds and carriers of therapeutic agents for disease and cancer therapy and tissue engineering.

Wear evaluation of CAD-CAM dental ceramic materials by chewing simulation

  • Turker, Izim;Kursoglu, Pinar
    • The Journal of Advanced Prosthodontics
    • /
    • v.13 no.5
    • /
    • pp.281-291
    • /
    • 2021
  • PURPOSE. To evaluate the wear of computer-aided design/computer-aided manufacturing (CAD-CAM) dental ceramic materials opposed by enamel as a function of increased chewing forces. MATERIALS AND METHODS. The enamel cusps of healthy human third molar teeth (n = 40) opposed by materials from CAD-CAM dental ceramic groups (n = 10), including Vita Enamic® (ENA), a polymer-infiltrated ceramic network (PICN); GC Cerasmart® (CERA), a resin nanoceramic; Celtra® Duo (DUO), a zirconia-reinforced lithium silicate (ZLS) ceramic; and IPS e.max ZirCAD (ZIR), a polycrystalline zirconia, were exposed to chewing simulation (1,200,000 cycles; 120 N load; 1 Hz frequency; 0.7 mm lateral and 2 mm vertical motion). The wear of both enamel cusps and materials was quantified using a 3D laser scanner, and the wear mechanisms were evaluated by scanning electron microscopy (SEM). The results were analysed using Welch ANOVA and Kruskal Wallis test (α = .05). RESULTS. ZIR showed lower volume loss (0.02 ± 0.01 mm3) than ENA, CERA and DUO (P = .001, P = .018 and P = .005, respectively). The wear of cusp/DUO [0.59 mm3 (0.50-1.63 mm3)] was higher than cusp/CERA [0.17 mm3 (0.04-0.41 mm3)] (P = .007). ZIR showed completely different wear mechanism in SEM. CONCLUSION. Composite structured materials such as PICN and ZLS ceramic exhibit more abrasive effect on opposing enamel due to their loss against wear, compared to uniform structured zirconia. The resin nano-ceramic causes the lowest enamel wear thanks to its flexible nano-ceramic microstructure. While zirconia appears to be an enamel-friendly material in wear volume loss, it can cause microstructural defects of enamel.