• Title/Summary/Keyword: polymer microparticles

Search Result 47, Processing Time 0.023 seconds

Fibers Flocculation and Physical Properties Changes of Paper Depending on Cationic Polymer Addition (양이온성 고분자 첨가에 따른 섬유의 응집 및 종이 물성 변화)

  • Yoon, Doo-Hoon;Park, Jong-Moon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.1 s.109
    • /
    • pp.10-16
    • /
    • 2005
  • Flocculation of fibers and its distribution in paper are related to flocculation mechanisms, retention and drainage. Relationship between flocculation mechanisms and physical properties of paper has not been fully studied. In this study, flocculation of fibers was investigated by changing cationic polymers for flocculation mechanism analysis. Flocculation of stock and physical strength of paper were similar when using branched PAM and linear PAM with fillers and microparticles Flocculation and physical strength were also similar when using branched PAM and linear PAM and microparticles without fillers. In that case excessive flocculation was not produced, so formation was improved but physical strength was decreased. When using branched PAM instead of linear PAM with filler addition, drainage time was decreased, air permeability was improved, and physical strength was increased.

Fabrication and Evaluation of Levosulpiride-loaded Amorphous Spray-dried Microparticle for Improved Solubility (용해도 개선을 위한 레보설피라이드 무정형 분무 건조 미세분말의 제조 및 평가)

  • Sung Giu Jin
    • Journal of Powder Materials
    • /
    • v.30 no.1
    • /
    • pp.47-52
    • /
    • 2023
  • The purpose of this study is to develop and evaluate amorphous spray-dried microparticles (SDM) containing levosulpiride to increase its solubility. SDM are prepared via solvent evaporation using polyvinylpyrrolidone (PVP) as the water-soluble polymer and Cremophor RH40 as the surfactant. The SDM is prepared by varying the amounts of PVP and Cremophor RH40, and its physicochemical properties, solubility, and dissolution are confirmed. All levosulpiride-loaded SDMs converted the crystalline drug into an amorphous form, significantly improving drug solubility and dissolution compared with the drug alone. SDM consisting of drug/PVP/Cremophor RH40 in a weight ratio of 5:10:3, with increased solubility (720 ± 36 vs. 1822 ± 51 ㎍/mL) and dissolution rate (10.3 ± 2.2 vs. 92.6 ± 6.0%) compared with drug alone, shows potential as a commercial drug for improved oral bioavailability of levosulpiride.

New Retention System Using Branched Polymer

  • Son, Dong-Jin;Kim, Bong-Yong
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06b
    • /
    • pp.251-256
    • /
    • 2006
  • The purpose of this study was to confirm multiple retention system of C-PAM, A-PAM and Inorganic micro particles vs. traditional micro particle system and dual polymer system by measuring retention, drainage and formation using RDA HSF and Techpap 2D -F Sensor The benefits of dual polymer system were easy to use, low chemical consumption and good retention property but defect was worse drainage property than inorganic microparticle systems. On the other hand, Inorganic microparticle system had benefit of good drainage effect but defects were difficult to use, high chemical consumption. Therefore, we tried to find optimal morphology of polyacrylamide and applied to multiple retention system of C-PAM, A-PAM and inorganic microparticles to compensate defects of both of retention systems. As a result, we found the performance of branched C-PAM, branched A-PAM and inorganic micro particle triple system was more appropriate than traditional inorganic mircoparticle systems or dual polymer systems by comparing retention, drainage and formation.

  • PDF

Preparation and Characterization of Cisplatin-Incorporated Chitosan Hydrogels, Microparticles, and Nanoparticles

  • Cha, Ju-Eun;Lee, Won-Bum;Park, Chong-Rae;Cho, Yong-Woo;Ahn, Cheol-Hee;Kwon, Ick-Chan
    • Macromolecular Research
    • /
    • v.14 no.5
    • /
    • pp.573-578
    • /
    • 2006
  • Three different, polymer-platinum conjugates (hydrogels, microparticles, and nanoparticles) were synthesized by complexation of cis-dichlorodiammineplatinum(II) (cisplatin) with partially succinylated glycol chitbsan (PSGC). Succinic anhydride was used as a linker to introduce cisplatin to glycol chitosan (GC). Succinylation of GC was investigated systematically as a function of the molar ratio of succinic anhydride to glucosamine, the methanol content in the reaction media, and the reaction temperature. By controlling the reaction conditions, water-soluble, partially water-soluble, and hydrogel-forming PSGCs were synthesized, and then conjugated with cisplatin. The complexation of cisplatin with water-soluble PSGC via a ligand exchange reaction of platinum from chloride to the carboxylates induced the formation of nano-sized aggregates in aqueous media. The hydrodynamic diameters of PSGC/cisplatin complex nano-aggregates, as determined by light scattering, were 180-300 nm and the critical aggregation concentrations (CACs), as determined by a fluorescence technique using pyrene as a probe, were $20-30{\mu}g/mL$. The conjugation of cisplatin with partially water-soluble PSGC, i.e., borderline between water-soluble and water-insoluble PSGC, produced micro-sized particles $<500{\mu}m$. Cisplatin-complexed PSGC hydrogels were prepared from water-insoluble PSGCs. All of the cisplatin-incorporated, polymer matrices released platinum in a sustained manner without any significant initial burst, suggesting that they may all be useful as slow release systems for cisplatin. The release rate of platinum increased with the morphology changes from hydrogel through microparticle to nanoparticle systems.

Preparation of Fullerene/Polystyrene Microparticles by Emulsion Polymerizations (에멀젼 중합에 의한 풀러렌/폴리스티렌 마이크로입자 제조)

  • Kim, Kun-Ji;Lee, Seung-Hee;Lee, Myong-Hoon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.400-401
    • /
    • 2008
  • 전기영동형 전자종이 디스플레이의 새로운 소재로써 $C_{60}$(fullerene)와 같은 나노 입자를 포함하는 새로운 전기영동 입자를 제조하였다. 본 연구에서는 안정제로 poly(vinyl pyrrolidone)(PVP)를 사용하여 fullerene을 포함하는 styrene emulsion을 안정화 한 후 라디칼 중합을 통해 fullerene이 포함된 polystyrene microemulsion particles을 제조 합으로써 입자의 분산안정성을 높이고 전기영동에 따른 입자의 움직임을 최적화하도록 하였다. 이 실험에서는 fullerene의 양에 따라 제조된 입자의 크기와 입자 분포를 관찰하였다. 입자의 크기와 입자 분포는 주사형 전자현미경 (SEM) 을 이용하여 확인하였다. 또한 fullerene-PS 입자의 구조 분석과 특성평가를 위해서 FT-IR를 측정하였고, 입자의 열적 성질을 위해 TGA를 측정하였다.

  • PDF

Electrospray-assisted Preparation of Polymer Microparticles Containing Water-insoluble Bioactive Compounds (전기방사법을 이용한 유용성 생리활성성분을 포함한 고분자 마이크로입자 제조)

  • Hwang, Yoon Kyun;Jeong, Min Kuk;Cho, Sung Yeon;Park, Sung Il;Cho, Eun Chul
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.43 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • An anti-aging compound ethyl (4-(2,3-dihydro-1H-indene-5-carboxyamido) benzoate) rapidly crystallizes in emulsion systems, and a flavonoid 3,5,7-trihydroxy-4'-methoxy-8-prenylflavone bearing a whitening function causes coloration of cosmetic compounds when mixed with metal oxides. In this study, an electrospray method was used to encapsulate water-insoluble bioactive compounds in polymeric microparticles. Poly (methyl methacrylate) and polycaprolactone were used to encapsulate ethyl (4-(2,3-dihydro-1H-indene-5-carboxyamido) benzoate) and 3,5,7-trihydroxy-4'-methoxy-8-prenylflavone, respectively. It was found that polymer concentration, the structure of electrospray nozzle, and compatibility between polymers and bioactive compounds were important factors in the preparation of the particles. Polycaprolactone particles encapsulating 3,5,7-trihydroxy-4'-methoxy-8-prenylflavone was effective in preventing coloration of a cosmetic compound when mixed with metal oxides.

Self-Organization and Phase Separation for Patterned Structures

  • Jeong, Un-Ryong;Park, Min-U;Park, Chu-Jin;Hyeon, Dong-Chun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.8.2-8.2
    • /
    • 2011
  • This talk demonstrates diverse patterned structures utilizing in-situ self-organization and phase separation of the materials into an ordered fashion. The patterned structures in this talk include electrospun nanofibers and electrosprayed microparticles embedding small particles. The positions of the small particles are in-situ controlled during the electrohydrodynamic process by the interaction with the polymer matrix. Another topic of the talk includes selective deposition of spin-coated materials on a corrugated surface that was prepared by buckling of polymer thin films. Solution are strong tendency to be positioned in the trench area of the surface, which facilitates the fabrication of micropatterns of diverse materials.

  • PDF

CORE $SHELL^{TM}$: THE LATEST INNOVATION IN POLYMER TECHNOLOGY FOR THE PAPER INDUSTRY (코어쉘 : 제지산업에 있어서 고분자 기술의 최근 혁신)

  • Gerli, Alessandra;Johnson, Gray
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2003.06a
    • /
    • pp.87-105
    • /
    • 2003
  • A new polymer technology commercialized with the name of Core Shell has been developed by Ondeo Nalco Company. Laboratory evaluations have demonstrated that Core Shell polymers produce a floc with high shear resistance, making them the flocculants of choice for modern high-speed paper machines. Core Shell polymers provide significant papermaking benefits, when used as single component or in combination with microparticles. At this time, the new program has been successfully applied on more than 60 paper and board machines across the world. Implementation of Core Shell polymers with or without a microparticle provided better and more stable retention values and improvements in paper quality, system cleanliness and machine runnability.

  • PDF

Fabrication of Micro-Channel with Embedded Electrode for Impedance Measurement (임피던스 측정용 측벽전극 내장형 마이크로채널 제작)

  • Kang, Gil-Hwan;Roh, Yong-Rae;Kim, Gyu-Man
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.3
    • /
    • pp.11-16
    • /
    • 2006
  • A new method to fabricate metal electrodes on side wall of the microchannel is presented. Electrical signal can be measured by the metal electrodes on channel side wall when microparticles pass through a polymer microchannel. 3 dimensional metal electrodes on channel side wall could be fabricated by local deposition of metal through a shadowmask and inclined evaporation. The polymer microchannel with side wall electrodes could be precisely aligned onto metal contact patterns on pyrex glass. The impedance measurement test showed possibility of electrical signal measurement using the fabricated device.

  • PDF

Controlled Production of Monodisperse Polycaprolactone Microparticles using Microfluidic Device (미세유체장치를 이용한 생분해성 Polycarprolactone의 단분산성 미세입자 생성제어)

  • Jeong, Heon-Ho
    • Clean Technology
    • /
    • v.25 no.4
    • /
    • pp.283-288
    • /
    • 2019
  • Monodisperse microparticles has been particularly enabling for various applications in the encapsulation and delivery of pharmaceutical agents. The microfluidic devices are attractive candidates to produce highly uniform droplets that serve as templates to form monodisperse microparticles. The microfluidic devices that have micro-scale channel allow precise control of the balance between surface tension and viscous forces in two-phase flows. One of its essential abilities is to generate highly monodisperse droplets. In this paper, a microfluidic approach for preparing monodisperse polycaprolactone (PCL) microparticles is presented. The microfluidic devices that have a flow-focusing generator are manufactured by soft-lithography using polydimethylsiloxane (PDMS). The crucial factors in the droplet generation are the controllability of size and monodispersity of the microdroplets. For this, the volumetric flow rates of the dispersed phase of oil solution and the continuous phase of water to generate monodisperse droplets are optimized. As a result, the optimal flow condition for droplet dripping region that is able to generate uniform droplet is found. Furthermore, the droplets containing PCL polymer by solvent evaporation after collection of droplet from device is solidified to generate the microparticle. The particle size can be controlled by tuning the flow rate and the size of the microchannel. The monodispersity of the PCL particles is measured by a coefficient of variation (CV) below 5%.