• Title/Summary/Keyword: polymer material

Search Result 2,962, Processing Time 0.03 seconds

Synthesis of Highly Selective Polyimide Material and Comparison of Gas Permeability by Molecular Dynamics Study (고선택성 폴리이미드 소재의 합성 및 분자동력학 연구를 통한 기체투과도의 비교)

  • Lee, Jung Moo;Kim, Deuk Ju;Jeong, Moon Ki;Lee, Myung Gun;Park, Chi Hoon;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.25 no.2
    • /
    • pp.162-170
    • /
    • 2015
  • In this study, gas permeability of polyimide materials having a various amine group was measured and molecular dynamics was used to analyze the dynamic characteristics of the gas molecules in the polyimide by calculating the position and velocity of the gas molecules with change of the time. The gas permeability of polyimide membrane having substitution site which increase free volume in the polymer was increased. However, polyimide with rigid structure showed decreased gas permeability. As a result of analyzing the change in the gas permeation behavior using molecular dynamics simulations, we confirmed that the results show the same tendency with actual measurements of the gas permeability.

Preparation of Higher Reinforced PVDF Hollow Fiber Microfiltration Membrane (고강도 PVDF 중공사 정밀여과막 제조 특성)

  • Choi, R.S.;Park, H.H.
    • Membrane Journal
    • /
    • v.20 no.4
    • /
    • pp.320-325
    • /
    • 2010
  • This paper was carried out to study the preparation condition and the permeation flux of reinforced poly(vinylidene fluoride) (PVDF) hollow fiber microfiltration (MF) membrane with the solvent, additive, second miscible polymer, and preparation condition used poly(vinylidene fluoride) (PVDF) such as a material with the excellent chemical stability and the milder preparation condition. The performance of the reinforced MF membrane prepared obtained the average $0.3{\mu}m$ pore size, $42kg_f/cm^2$ tensile strength, and the high water flux of 600 LMH. The change of membrane performance with various additives was considerably affected on the water flux and rejection. For hydrophilic modification of hydrophobic PVDF MF membrane, the MF membrane might be prepared with a prefer water flux and rejection by addition of hydrophilic poly(methyl methacrylate) (PMMA).

Water Soluble Cyclosporine Monomethoxy Poly(ethyleneglycol) Conjugates as Potential Prod rugs

  • Cho, Hoon;Chung, Yong-Seog
    • Archives of Pharmacal Research
    • /
    • v.27 no.6
    • /
    • pp.662-669
    • /
    • 2004
  • The highly water-soluble monomethoxypoly(ethyleneglycol) (mPEG) prod rugs of cyciosporin A(CsA) were synthesized. These prod rugs were prepared by initially preparing intermediate in the form of carbonate at the 3'-positions of CsA with chloromethyl chloroformate, in the pres-ence of a base to provide a 3'-carbonated CsA intermediate. Reaction of the CsA intermediate with mPEG derivative in the presence of a base provides the desired water-soluble prod rugs. As a model, we chose molecular weight 5 kDa mPEG in the reaction with CsA to give water soluble prodrugs. To prove that the prod rug is decomposed in the body to produce CsA, the enzymatic hydrolysis test was conducted using human liver homogenate at $37^{\circ}C$. The prodrug was decomposed in human liver homogenate to produce the active material, CsA, and the hydrolysis half-life ($t_{1/2}$) of the prodrug, KI-306 was 2.2 minutes at $37^{\circ}C$. However, a demon-stration of non-enzymatic conversion in pH 7.4 phosphate buffer was provided by the fact that the half-life ($t_{1/2}$) is 21 hours at 37$^{\circ}C$. The hydrolysis test in rat whole blood was also conducted. The hydrolysis was seen with half-life ($t_{1/2}$) of about 9.9, 65.0, 14.2, 3.4, 2.1 9.5, and 1.6 minutes for KI-306, 309, 312, 313, 315, 316, and 317, respectively. This is the ideal for CsA prodrug. The pharmacokinetic study of the prodrug, KI-306, in comparison to the commer-cial product (Sandimmune Neoral Solution) was also carried out after single oral dose. Each rat received 7 mg/kg of CsA equivalent dose. Especially, the prodrug KI-306 exhibits higher AUC and $C_{max}$ than the conventional Neoral. The AUC and $C_{max}$ were increased nearly 1.5 fold. The kinetic value was also seen with $T_{max}$ of about 1.43 and 2.44 hours for KI-306 and Neoral, respectively.

Reliable Anisotropic Conductive Adhesives Flip Chip on Organic Substrates For High Frequency Applications

  • Paik, Kyung-Wook;Yim, Myung-Jin;Kwon, Woon-Seong
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2001.04a
    • /
    • pp.35-43
    • /
    • 2001
  • Flip chip assembly on organic substrates using ACAs have received much attentions due to many advantages such as easier processing, good electrical performance, lower cost, and low temperature processing compatible with organic substrates. ACAs are generally composed of epoxy polymer resin and small amount of conductive fillers (less than 10 wt.%). As a result, ACAs have almost the same CTE values as an epoxy material itself which are higher than conventional underfill materials which contains lots of fillers. Therefore, it is necessary to lower the CTE value of ACAs to obtain more reliable flip chip assembly on organic substrates using ACAs. To modify the ACA composite materials with some amount of conductive fillers, non-conductive fillers were incorporated into ACAs. In this paper, we investigated the effect of fillers on the thermo-mechanical properties of modified ACA composite materials and the reliability of flip chip assembly on organic substrates using modified ACA composite materials. Contact resistance changes were measured during reliability tests such as thermal cycling, high humidity and temperature, and high temperature at dry condition. It was observed that reliability results were significantly affected by CTEs of ACA materials especially at the thermal cycling test. Results showed that flip chip assembly using modified ACA composites with lower CTEs and higher modulus by loading non-conducting fillers exhibited better contact resistance behavior than conventional ACAs without non-conducting fillers. Microwave model and high-frequency measurement of the ACF flip-chip interconnection was investigated using a microwave network analysis. ACF flip chip interconnection has only below 0.1nH, and very stable up to 13 GHz. Over the 13 GHz, there was significant loss because of epoxy capacitance of ACF. However, the addition of $SiO_2filler$ to the ACF lowered the dielectric constant of the ACF materials resulting in an increase of resonance frequency up to 15 GHz. Our results indicate that the electrical performance of ACF combined with electroless Wi/Au bump interconnection is comparable to that of solder joint.

  • PDF

Toughness Improvement of Unsaturated Polyester Mortars Blended with Polyurethane Liquid Rubber (폴리우레탄 액상고무를 혼합한 불포화 폴리에스테르 모르타르의 인성 증진효과)

  • 최영준;박준철;박정민;김화중
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.3
    • /
    • pp.283-290
    • /
    • 2002
  • Generally polymer mortar and concrete using unsaturated polyester resin has high strengths and good chemical resistance. However it also has high brittleness and because of this reason, it is not used for the purpose that demands high resistance to impact. The purpose of this study is to improve the brittleness of unsaturated polyester mortar(UPE mortar) which could be used for the flooring material with recycled aggregates and UPE. Polyurethane liquid rubber(PU) and recycled aggregates were used to complement the brittleness and to recycle the resources respectively. The characteristics of mortar were investigated according to the molecular weight and substitution rate of PU. As the molecular weight and PU substitution rate were increased, the viscosity was increased, working life became fast and curing shrinkage was reduced. Compressive and flexural strengths were also reduced but tile brittleness was improved. Therefore, it is seemed that the improved WE mortar could be obtained by using polyurethane liquid rubber with the polyol of molecular weight 2000, 3000.

Shear bond strength of composite resin to titanium according to various surface treatments

  • Lee, Seung-Yun;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Advanced Prosthodontics
    • /
    • v.1 no.2
    • /
    • pp.68-74
    • /
    • 2009
  • STATEMENT OF PROBLEM. When veneering composite resin-metal restoration is prepared, the fact that bond strength between Ti and composite resin is relatively weak should be considered. PURPOSE. The purpose of this study is to evaluate the shear bond strength between the veneering composite resin and commercial pure (CP) Ti / Ti-6Al-4V alloy according to the method of surface treatment. MATERIAL AND METHODS. The disks were cast by two types of metal. Their surfaces were treated by sandblasting, metal conditioner, TiN coating and silicoating respectively. After surface treatment, the disks were veneered by composite resin (Tescera$^{TM}$, Bisco, USA) which is 5 mm in diameter and 3 mm in thickness. The specimens were stored in water at $25^{\circ}C$ for 24 hours, and then evaluated for their shear bond strength by universal testing machine (STM-$5^{(R)}$, United Calibration, USA). These values were statistically analyzed. RESULTS. 1. All methods of surface treatment were used in this study satisfied the requirements of ISO 10477 which is the standard of polymer-based crown and bridge materials. 2. The metal conditioner treated group showed the highest value in shear bond strength of CP Ti, silicoated group, TiN coated group, sandblasted group, in following order. 3. The silicoated group showed the highest value in shear bond strength of Ti-6Al-4V alloy, metal conditioner treated group, sandblasted group, TiN coated group, in following order. CONCLUSION. Within the limitations of this study, all methods of surface treatment used in this study are clinically available.

Tailored biomimetic actuators made with multiwalled carbon nanotube loaded ionomeric nanocomposites (생체모방 액츄에이터용 다중탄소나노튜브/고분자 나노복합체)

  • Lee, Se-Jong;Lee, Deuk-Yong;Lee, Myung-Hyun;Kim, Bae-Yeon
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.15 no.3
    • /
    • pp.108-113
    • /
    • 2005
  • Biomimetic actuators that can produce soft-actuation but large force capability are of interest. Nafion, an effective ionomeric material from DuPont, has been shown to produce large deformation under low electric fields (<10V/mm). Carbon nanotube/polymer nanocomposites were cast to enhance the electromechanical properties of the composites. Multiwalled carbon nanotube (M-CNT)/Nafion nanocomposites were prepared by a solution casting to investigate the effect of M-CNT loading in the range of 0 to 7 wt% on electromechanical properties of the M-CNT/Nafion nanocomposites. The measured elastic modulus and actuation force of the M-CNT/Nafion nanocomposites are drastically different, showing larger elastic modulus and improved electromechanical coupling, from the one without M-CNT.

An Experimental Study on the Durability of High-Ductile Mortar (고인성 모르타르의 내구특성에 관한 실험적 연구)

  • Rho, Hyoung-Nam;Kim, Ju-Sang;Hwang, Nam-Soon;Kim, Jae-Hwan;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2007.11a
    • /
    • pp.71-74
    • /
    • 2007
  • With the changes of times the building materials tend to extend the demand for application under the special environment. Since high-ductile mortar is developed, the building materials show excellent performance like toughness, compression, tensile, and bending, etc. in the general concrete from the existing brittle point. And, recently they are widely used as repairing and reinforcing materials both at home and abroad because they are recognized as excellence like durability and fire-resistance. However, it is in a situation of creating problems in durability because it frequently happened deterioration of buildings that have already repaired and reinforced at a time when it requires reconstruction of recently deteriorated construction structure recently. Therefore, in this study improved with a more repair Material development and reinforcement of the second high-ductile mortar products for a variety of basic materials were presented want, research plans used include traditional repair materials and the newly developed PCM (polymer cement mortar) structural reinforcement type indicated that comparison. PCM analysis in order to present a rate depending on the types fiber 0, 1.2 and 2.0(%) at three levels and mixture water according to ratios of weight to Plain in the 2.0 and 1.85(kg) at two levels is set, the results were as follows. 1) This study has shown that PCM had excellent strain hardening behavior at the same time that the bending stress increased according to the fiber contents. 2) This study has shown that it had the durability performance due to the high substance transmission according to the fiber contents.

  • PDF

Flow Injection Analysis for On-line Monitoring of Trehalose in Fermentation Processes (발효공정에서 트레할로스의 온라인 모니터링을 위한 흐름주입분석)

  • Han, Kyung-Ah;Rhee, Jong-Il
    • KSBB Journal
    • /
    • v.22 no.2
    • /
    • pp.84-90
    • /
    • 2007
  • Trehalose is non-reducing disaccharide which is found in bacteria, fungi, plants and insects. Trehalose has been determined by several analysis methods. To monitor the concentrations of trehalose in a process, enzymatic methods have more advantage over others, e.g. more specific. In this work, trehalase was immobilized on VA-epoxy polymer and applied to FIA systems. The behaviours of these FIA systems were characterized and used to monitor the trehalose concentrations. Use of optical detection technique was chosen for trehalose-FIA system. On-line monitoring data and off-line data were measured by HPLC.

Synthesis, Characterization, and Catalytic Applications of Fe-MCM-41 (Fe-MCM-41의 제조, 물성조사 및 촉매적 응용 연구)

  • Yoon, Sang Soon;Choi, Jung Sik;Choi, Hyeong Jin;Ahn, Wha Seung
    • Korean Chemical Engineering Research
    • /
    • v.43 no.2
    • /
    • pp.215-221
    • /
    • 2005
  • A Fe-containing mesoporous silica (Fe-MCM-41) in which part of Si in the framework was replaced by Fe(Si-O-Fe) has been successfully prepared using $Fe^{3+}$ salt by a direct synthesis route. Physical properties of the material were characterized by XRD, $N_2$ adsorption, SEM/TEM, UV-vis and FT-IR spectroscopies. Fe-MCM-41 exhibited high catalytic activity in phenol hydroxylation using $H_2O_2$ as oxidant, giving phenol conversion of ca. 60% at $50^{\circ}C$ [phenol : $H_2O_2$ = 1:1, water solvent]. Fe-MCM-41 was also applied to the growth of CNTs, utilizing a thermal-CVD reactor using acetylene gas, which demonstrated that multi-wall CNTs could be prepared efficiently using the Fe-MCM-41 catalyst.